Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Retracted

Motivated Cognitive Control: Reward Incentives Modulate Preparatory Neural Activity during Task-Switching

Adam C. Savine and Todd S. Braver
Journal of Neuroscience 4 August 2010, 30 (31) 10294-10305; DOI: https://doi.org/10.1523/JNEUROSCI.2052-10.2010
Adam C. Savine
Department of Psychology, Washington University, St. Louis, Missouri 63139
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Todd S. Braver
Department of Psychology, Washington University, St. Louis, Missouri 63139
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

This article has been retracted. Please see:

  • Retraction: Savine and Braver, Motivated Cognitive Control: Reward Incentives Modulate Preparatory Neural Activity during Task-Switching - May 15, 2013

Abstract

It is increasingly appreciated that executive control processes need to be understood in terms of motivational as well as cognitive mechanisms. The current study examined the impact of performance-contingent reward incentives (monetary bonuses) on neural activity dynamics during cued task-switching performance. Behavioral measures indicated that performance was improved and task-switch costs selectively reduced on incentive trials. Trial-by-trial fluctuations in incentive value were associated with activation in reward-related brain regions (dopaminergic midbrain, paracingulate cortex) and also modulated the dynamics of switch-selective activation in the brain cognitive control network. Within lateral prefrontal cortex (PFC), both additive (inferior frontal junction) and interactive [dorsolateral PFC (DLPFC)] incentive effects were observed. In DLPFC, incentive modulation of activation predicted task-switching behavioral performance, but with hemispherically dissociable effects. Furthermore, in left DLPFC, incentive modulation specifically enhanced task–cue-related activation, and this activation in turn predicted that the trial would be subsequently rewarded (because of optimal performance). The results suggest that motivational incentives have a selective effect on brain regions that subserve cognitive control processes during task-switching and, moreover, that one mechanism of effect might be the enhancement of cue-related task preparation within left DLPFC.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 30 (31)
Journal of Neuroscience
Vol. 30, Issue 31
4 Aug 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Motivated Cognitive Control: Reward Incentives Modulate Preparatory Neural Activity during Task-Switching
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Motivated Cognitive Control: Reward Incentives Modulate Preparatory Neural Activity during Task-Switching
Adam C. Savine, Todd S. Braver
Journal of Neuroscience 4 August 2010, 30 (31) 10294-10305; DOI: 10.1523/JNEUROSCI.2052-10.2010

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Motivated Cognitive Control: Reward Incentives Modulate Preparatory Neural Activity during Task-Switching
Adam C. Savine, Todd S. Braver
Journal of Neuroscience 4 August 2010, 30 (31) 10294-10305; DOI: 10.1523/JNEUROSCI.2052-10.2010
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Induced Alpha Rhythms Track the Content and Quality of Visual Working Memory Representations with High Temporal Precision
  • Coordinated Regulation of Hepatic Energy Stores by Leptin and Hypothalamic Agouti-Related Protein
  • Whisker Dynamics Underlying Tactile Exploration
Show more Retracted
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.