Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Systems/Cognitive

Functional Subdivisions in the Left Angular Gyrus Where the Semantic System Meets and Diverges from the Default Network

Mohamed L. Seghier, Elizabeth Fagan and Cathy J. Price
Journal of Neuroscience 15 December 2010, 30 (50) 16809-16817; DOI: https://doi.org/10.1523/JNEUROSCI.3377-10.2010
Mohamed L. Seghier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Elizabeth Fagan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cathy J. Price
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The left angular gyrus (AG) is reliably activated across a wide range of semantic tasks, and is also a consistently reported component of the so-called default network that it is deactivated during all goal-directed tasks. We show here that there is only partial overlap between the semantic system and the default network in left AG and the overlap defines a reliable functional landmark that can be used to segregate functional subdivisions within AG. In 94 healthy human subjects, we collected functional magnetic resonance imaging (fMRI) data during fixation and eight goal directed tasks that involved semantic matching, perceptual matching or speech production in response to familiar or unfamiliar stimuli presented in either verbal (letters) or nonverbal (pictures) formats. Our results segregated three different left AG regions that were all activated by semantic relative to perceptual matching: (1) a midregion (mAG) that overlapped with the default network because it was deactivated during all tasks relative to fixation; (2) a dorsomesial region (dAG) that was more activated by all tasks relative to fixation; and (3) a ventrolateral region (vAG) that was only activated above fixation during semantic matching. By examining the effects of task and stimuli in each AG subdivision, we propose that mAG is involved in semantic associations regardless of the presence or absence of a stimulus; dAG is involved in searching for semantics in all visual stimuli, and vAG is involved in the conceptual identification of visual inputs. Our findings provide a framework for reporting and interpreting AG activations with greater definition.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 30 (50)
Journal of Neuroscience
Vol. 30, Issue 50
15 Dec 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
  • 2010 Author and Subject Indices
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Functional Subdivisions in the Left Angular Gyrus Where the Semantic System Meets and Diverges from the Default Network
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Functional Subdivisions in the Left Angular Gyrus Where the Semantic System Meets and Diverges from the Default Network
Mohamed L. Seghier, Elizabeth Fagan, Cathy J. Price
Journal of Neuroscience 15 December 2010, 30 (50) 16809-16817; DOI: 10.1523/JNEUROSCI.3377-10.2010

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Functional Subdivisions in the Left Angular Gyrus Where the Semantic System Meets and Diverges from the Default Network
Mohamed L. Seghier, Elizabeth Fagan, Cathy J. Price
Journal of Neuroscience 15 December 2010, 30 (50) 16809-16817; DOI: 10.1523/JNEUROSCI.3377-10.2010
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Systems/Cognitive

  • Influence of Reward on Corticospinal Excitability during Movement Preparation
  • Identification and Characterization of a Sleep-Active Cell Group in the Rostral Medullary Brainstem
  • Gravin Orchestrates Protein Kinase A and β2-Adrenergic Receptor Signaling Critical for Synaptic Plasticity and Memory
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.