Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Featured ArticleArticles, Development/Plasticity/Repair

Identification of a Novel Form of Noradrenergic-Dependent Respiratory Motor Plasticity Triggered by Vagal Feedback

Arash Tadjalli, James Duffin and John Peever
Journal of Neuroscience 15 December 2010, 30 (50) 16886-16895; DOI: https://doi.org/10.1523/JNEUROSCI.3394-10.2010
Arash Tadjalli
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James Duffin
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John Peever
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The respiratory control system is not just reflexive, it is smart, it learns, and, in fact, it has a memory. The respiratory system listens to and carefully remembers how previous stimuli affect breathing. Respiratory memory is laid down by adjusting synaptic strength between respiratory neurons. For example, repeated hypoxic bouts trigger a form of respiratory memory that functions to strengthen the ability of respiratory motoneurons to trigger contraction of breathing muscles. This type of respiratory plasticity is known as long-term facilitation (LTF). Although chemical feedback, such as hypoxia, initiates LTF, it is unknown whether natural modulation of mechanical feedback (from vagal inputs) also causes motor plasticity. Here, we used reverse microdialysis, electrophysiology, neuropharmacology, and histology to determine whether episodic modulation of vagally mediated mechanical feedback is able to induce respiratory LTF in anesthetized adult rats. We show that repeated obstructive apneas disrupt vagal feedback and trigger LTF of hypoglossal motoneuron activity and genioglossus muscle tone. This same stimulus does not cause LTF of diaphragm activity. Hypoxic episodes do not cause apnea-induced LTF; instead, LTF is triggered by modulation of vagal feedback. Unlike hypoxia-induced respiratory plasticity, vagus-induced LTF does not require 5-HT2 receptors but instead relies on activation of α1-adrenergic receptors on hypoglossal motoneurons. In summary, we identify a novel form of hypoxia- and 5-HT-independent respiratory motor plasticity that is triggered by physiological modulation of vagal feedback and is mediated by α1-adrenergic receptor activation on (or near) hypoglossal motoneurons.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 30 (50)
Journal of Neuroscience
Vol. 30, Issue 50
15 Dec 2010
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
  • 2010 Author and Subject Indices
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Identification of a Novel Form of Noradrenergic-Dependent Respiratory Motor Plasticity Triggered by Vagal Feedback
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Identification of a Novel Form of Noradrenergic-Dependent Respiratory Motor Plasticity Triggered by Vagal Feedback
Arash Tadjalli, James Duffin, John Peever
Journal of Neuroscience 15 December 2010, 30 (50) 16886-16895; DOI: 10.1523/JNEUROSCI.3394-10.2010

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Identification of a Novel Form of Noradrenergic-Dependent Respiratory Motor Plasticity Triggered by Vagal Feedback
Arash Tadjalli, James Duffin, John Peever
Journal of Neuroscience 15 December 2010, 30 (50) 16886-16895; DOI: 10.1523/JNEUROSCI.3394-10.2010
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Development/Plasticity/Repair

  • Macrophages Promote Repair of Inner Hair Cell Ribbon Synapses following Noise-Induced Cochlear Synaptopathy
  • Pairing with enriched sound exposure restores auditory processing degraded by an antidepressant
  • Cbln1 Directs Axon Targeting by Corticospinal Neurons Specifically toward Thoraco-Lumbar Spinal Cord
Show more Development/Plasticity/Repair
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.