Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Systems/Cognitive

Distinct Neural Substrates of Duration-Based and Beat-Based Auditory Timing

Sundeep Teki, Manon Grube, Sukhbinder Kumar and Timothy D. Griffiths
Journal of Neuroscience 9 March 2011, 31 (10) 3805-3812; DOI: https://doi.org/10.1523/JNEUROSCI.5561-10.2011
Sundeep Teki
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Manon Grube
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sukhbinder Kumar
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Timothy D. Griffiths
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Research on interval timing strongly implicates the cerebellum and the basal ganglia as part of the timing network of the brain. Here we tested the hypothesis that the brain uses differential timing mechanisms and networks—specifically, that the cerebellum subserves the perception of the absolute duration of time intervals, whereas the basal ganglia mediate perception of time intervals relative to a regular beat. In a functional magnetic resonance imaging experiment, we asked human subjects to judge the difference in duration of two successive time intervals as a function of the preceding context of an irregular sequence of clicks (where the task relies on encoding the absolute duration of time intervals) or a regular sequence of clicks (where the regular beat provides an extra cue for relative timing). We found significant activations in an olivocerebellar network comprising the inferior olive, vermis, and deep cerebellar nuclei including the dentate nucleus during absolute, duration-based timing and a striato-thalamo-cortical network comprising the putamen, caudate nucleus, thalamus, supplementary motor area, premotor cortex, and dorsolateral prefrontal cortex during relative, beat-based timing. Our results support two distinct timing mechanisms and underlying subsystems: first, a network comprising the inferior olive and the cerebellum that acts as a precision clock to mediate absolute, duration-based timing, and second, a distinct network for relative, beat-based timing incorporating a striato-thalamo-cortical network.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 31 (10)
Journal of Neuroscience
Vol. 31, Issue 10
9 Mar 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Distinct Neural Substrates of Duration-Based and Beat-Based Auditory Timing
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Distinct Neural Substrates of Duration-Based and Beat-Based Auditory Timing
Sundeep Teki, Manon Grube, Sukhbinder Kumar, Timothy D. Griffiths
Journal of Neuroscience 9 March 2011, 31 (10) 3805-3812; DOI: 10.1523/JNEUROSCI.5561-10.2011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Distinct Neural Substrates of Duration-Based and Beat-Based Auditory Timing
Sundeep Teki, Manon Grube, Sukhbinder Kumar, Timothy D. Griffiths
Journal of Neuroscience 9 March 2011, 31 (10) 3805-3812; DOI: 10.1523/JNEUROSCI.5561-10.2011
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Systems/Cognitive

  • Episodic Reinstatement in the Medial Temporal Lobe
  • Musical Expertise Induces Audiovisual Integration of Abstract Congruency Rules
  • The Laminar Development of Direction Selectivity in Ferret Visual Cortex
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.