Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Systems/Cognitive

Chronic Cocaine Self-Administration in Rhesus Monkeys: Impact on Associative Learning, Cognitive Control, and Working Memory

Jessica N. Porter, Adam S. Olsen, Kate Gurnsey, Brian P. Dugan, Hank P. Jedema and Charles W. Bradberry
Journal of Neuroscience 30 March 2011, 31 (13) 4926-4934; DOI: https://doi.org/10.1523/JNEUROSCI.5426-10.2011
Jessica N. Porter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Adam S. Olsen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kate Gurnsey
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Brian P. Dugan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hank P. Jedema
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles W. Bradberry
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cocaine users display a wide range of cognitive impairments. Because treatment outcome is dependent on baseline cognitive ability, it is clinically important to understand the underlying neurobiology of these deficits. Therefore, it is crucial to determine whether cocaine exposure by itself is an etiological factor and, if so, to determine the overall nature of cognitive deficits associated with cocaine use. This will help to guide therapeutic approaches that address cognitive components of cocaine use to improve treatment outcome. We used rhesus monkeys in a longitudinal study in which 14 animals were characterized before assignment to matched control (n = 6) and cocaine self-administration (n = 8) groups. Self-administration took place on 4 consecutive days/week over 9 months, with a maximum (and typical) daily cumulative intake of 3.0 mg/kg. Weekly cognitive assessments (total of 36) were conducted after a 72 h drug-free period. We used a stimulus discrimination task with reversal to evaluate associative learning and the cognitive control/flexibility needed to adapt to changes in reward contingencies. After extended self-administration, initial accuracy on the stimulus discrimination indicated intact associative learning. However, animals were impaired at maintaining high levels of accuracy needed to reach criterion and initiate the reversal. Increasing the reward contrast between stimuli permitted evaluation of reversal performance and revealed striking deficits in the cocaine group. Impairments in visual working memory were also observed using a delayed match-to-sample task. These results suggest a combination of generalized, possibly attentional, impairments, along with a more specific cognitive control impairment implicating orbitofrontal cortex dysfunction.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 31 (13)
Journal of Neuroscience
Vol. 31, Issue 13
30 Mar 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Chronic Cocaine Self-Administration in Rhesus Monkeys: Impact on Associative Learning, Cognitive Control, and Working Memory
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Chronic Cocaine Self-Administration in Rhesus Monkeys: Impact on Associative Learning, Cognitive Control, and Working Memory
Jessica N. Porter, Adam S. Olsen, Kate Gurnsey, Brian P. Dugan, Hank P. Jedema, Charles W. Bradberry
Journal of Neuroscience 30 March 2011, 31 (13) 4926-4934; DOI: 10.1523/JNEUROSCI.5426-10.2011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Chronic Cocaine Self-Administration in Rhesus Monkeys: Impact on Associative Learning, Cognitive Control, and Working Memory
Jessica N. Porter, Adam S. Olsen, Kate Gurnsey, Brian P. Dugan, Hank P. Jedema, Charles W. Bradberry
Journal of Neuroscience 30 March 2011, 31 (13) 4926-4934; DOI: 10.1523/JNEUROSCI.5426-10.2011
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Systems/Cognitive

  • The Laminar Development of Direction Selectivity in Ferret Visual Cortex
  • Individual Differences in Amygdala-Medial Prefrontal Anatomy Link Negative Affect, Impaired Social Functioning, and Polygenic Depression Risk
  • Influence of Reward on Corticospinal Excitability during Movement Preparation
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.