Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Brief Communications

Sexually Dimorphic Shaping of Interneuron Dendrites Involves the Hunchback Transcription Factor

Junpei Goto, Yoshitaka Mikawa, Masayuki Koganezawa, Hiroki Ito and Daisuke Yamamoto
Journal of Neuroscience 6 April 2011, 31 (14) 5454-5459; DOI: https://doi.org/10.1523/JNEUROSCI.4861-10.2011
Junpei Goto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Yoshitaka Mikawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masayuki Koganezawa
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroki Ito
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daisuke Yamamoto
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Sexual dimorphism of the brain has been well characterized anatomically in Drosophila melanogaster at the single neuron level, yet little is known about the molecular mechanism whereby cellular sex differences are generated except that the neural sex determination gene fruitless (fru) plays a key role. The fru-expressing mAL interneuron cluster is sexually dimorphic in three aspects: the number of cells composing the cluster is 5 in females and 30 in males; the ipsilateral neurite is absent in females and present in males; the contralateral neurite forms Y-shaped branches in the subesophageal ganglion in females while it ends with a simple horsetail-like structure in males. By screens in the compound eye for modifiers of roughness induced by fru+ overexpression, we identified a loss-of-function allele of hunchback (hb) to be a suppressor of this phenotype. Hb was expressed in most of the fru-expressing neurons in the pupal and adult stages. Knocking down hb in mAL MARCM (Mosaic Analysis with a Repressible Cell Marker) clones in the male brain resulted in partial demasculinization of the branching pattern of the contralateral neurites without affecting the cell number and the ipsilateral neurite formation. The present results suggest that Hb is essential for male-typical shaping of the contralateral neurites by Fru.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 31 (14)
Journal of Neuroscience
Vol. 31, Issue 14
6 Apr 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sexually Dimorphic Shaping of Interneuron Dendrites Involves the Hunchback Transcription Factor
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Sexually Dimorphic Shaping of Interneuron Dendrites Involves the Hunchback Transcription Factor
Junpei Goto, Yoshitaka Mikawa, Masayuki Koganezawa, Hiroki Ito, Daisuke Yamamoto
Journal of Neuroscience 6 April 2011, 31 (14) 5454-5459; DOI: 10.1523/JNEUROSCI.4861-10.2011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Sexually Dimorphic Shaping of Interneuron Dendrites Involves the Hunchback Transcription Factor
Junpei Goto, Yoshitaka Mikawa, Masayuki Koganezawa, Hiroki Ito, Daisuke Yamamoto
Journal of Neuroscience 6 April 2011, 31 (14) 5454-5459; DOI: 10.1523/JNEUROSCI.4861-10.2011
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning
  • Pharmacologically Counteracting a Phenotypic Difference in Cerebellar GABAA Receptor Response to Alcohol Prevents Excessive Alcohol Consumption in a High Alcohol-Consuming Rodent Genotype
  • Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination
Show more Brief Communications
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.