Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Systems/Cognitive

Hydration State Controls Stress Responsiveness and Social Behavior

Eric G. Krause, Annette D. de Kloet, Jonathan N. Flak, Michael D. Smeltzer, Matia B. Solomon, Nathan K. Evanson, Stephen C. Woods, Randall R. Sakai and James P. Herman
Journal of Neuroscience 6 April 2011, 31 (14) 5470-5476; DOI: https://doi.org/10.1523/JNEUROSCI.6078-10.2011
Eric G. Krause
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Annette D. de Kloet
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonathan N. Flak
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael D. Smeltzer
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matia B. Solomon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nathan K. Evanson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen C. Woods
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Randall R. Sakai
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
James P. Herman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Life stress frequently occurs within the context of homeostatic challenge, requiring integration of physiological and psychological need into appropriate hormonal, cardiovascular, and behavioral responses. To test neural mechanisms underlying stress integration within the context of homeostatic adversity, we evaluated the impact of a pronounced physiological (hypernatremia) challenge on hypothalamic-pituitary-adrenal (HPA), cardiovascular, and behavioral responses to an acute psychogenic stress. Relative to normonatremic controls, rats rendered mildly hypernatremic had decreased HPA activation in response to physical restraint, a commonly used rodent model of psychogenic stress. In addition, acute hypernatremia attenuated the cardiovascular response to restraint and promoted faster recovery to prestress levels. Subsequent to restraint, hypernatremic rats had significantly more c-Fos expression in oxytocin- and vasopressin-containing neurons within the supraoptic and paraventricular nuclei of the hypothalamus. Hypernatremia also completely eliminated the increased plasma renin activity that accompanied restraint in controls, but greatly elevated circulating levels of oxytocin. The endocrine and cardiovascular profile of hypernatremic rats was predictive of decreased anxiety-like behavior in the social interaction test. Collectively, the results indicate that acute hypernatremia is a potent inhibitor of the HPA, cardiovascular, and behavioral limbs of the stress response. The implications are that the compensatory responses that promote renal-sodium excretion when faced with hypernatremia also act on the nervous system to decrease reactivity to psychogenic stressors and facilitate social behavior, which may suppress the anxiety associated with approaching a communal water source and support the social interactions that may be encountered when engaging in drinking behavior.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 31 (14)
Journal of Neuroscience
Vol. 31, Issue 14
6 Apr 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Hydration State Controls Stress Responsiveness and Social Behavior
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Hydration State Controls Stress Responsiveness and Social Behavior
Eric G. Krause, Annette D. de Kloet, Jonathan N. Flak, Michael D. Smeltzer, Matia B. Solomon, Nathan K. Evanson, Stephen C. Woods, Randall R. Sakai, James P. Herman
Journal of Neuroscience 6 April 2011, 31 (14) 5470-5476; DOI: 10.1523/JNEUROSCI.6078-10.2011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Hydration State Controls Stress Responsiveness and Social Behavior
Eric G. Krause, Annette D. de Kloet, Jonathan N. Flak, Michael D. Smeltzer, Matia B. Solomon, Nathan K. Evanson, Stephen C. Woods, Randall R. Sakai, James P. Herman
Journal of Neuroscience 6 April 2011, 31 (14) 5470-5476; DOI: 10.1523/JNEUROSCI.6078-10.2011
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Systems/Cognitive

  • Episodic Reinstatement in the Medial Temporal Lobe
  • Musical Expertise Induces Audiovisual Integration of Abstract Congruency Rules
  • The Laminar Development of Direction Selectivity in Ferret Visual Cortex
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.