Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Brief Communications

How Does Your Cortex Grow?

Armin Raznahan, Phillip Shaw, Francois Lalonde, Mike Stockman, Gregory L. Wallace, Dede Greenstein, Liv Clasen, Nitin Gogtay and Jay N. Giedd
Journal of Neuroscience 11 May 2011, 31 (19) 7174-7177; DOI: https://doi.org/10.1523/JNEUROSCI.0054-11.2011
Armin Raznahan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Phillip Shaw
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Francois Lalonde
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mike Stockman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gregory L. Wallace
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dede Greenstein
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Liv Clasen
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nitin Gogtay
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jay N. Giedd
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Understanding human cortical maturation is a central goal for developmental neuroscience. Significant advances toward this goal have come from two recent strands of in vivo structural magnetic resonance imaging research: (1) longitudinal study designs have revealed that factors such as sex, cognitive ability, and disease are often better related to variations in the tempo of anatomical change than to variations in anatomy at any one time point; (2) largely cross-sectional applications of new surface-based morphometry (SBM) methods have shown how the traditional focus on cortical volume (CV) can obscure information about the two evolutionarily and genetically distinct determinants of CV: cortical thickness (CT) and surface area (SA). Here, by combining these two strategies for the first time and applying SBM in >1250 longitudinally acquired brain scans from 647 healthy individuals aged 3–30 years, we deconstruct cortical development to reveal that distinct trajectories of anatomical change are hidden within, and give rise to, a curvilinear pattern of CV maturation. Developmental changes in CV emerge through the sexually dimorphic and age-dependent interaction of changes in CT and SA. Moreover, SA change itself actually reflects complex interactions between brain size-related changes in exposed cortical convex hull area, and changes in the degree of cortical gyrification, which again vary by age and sex. Knowing of these developmental dissociations, and further specifying their timing and sex-biases, provides potent new research targets for basic and clinical neuroscience.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 31 (19)
Journal of Neuroscience
Vol. 31, Issue 19
11 May 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
How Does Your Cortex Grow?
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
How Does Your Cortex Grow?
Armin Raznahan, Phillip Shaw, Francois Lalonde, Mike Stockman, Gregory L. Wallace, Dede Greenstein, Liv Clasen, Nitin Gogtay, Jay N. Giedd
Journal of Neuroscience 11 May 2011, 31 (19) 7174-7177; DOI: 10.1523/JNEUROSCI.0054-11.2011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
How Does Your Cortex Grow?
Armin Raznahan, Phillip Shaw, Francois Lalonde, Mike Stockman, Gregory L. Wallace, Dede Greenstein, Liv Clasen, Nitin Gogtay, Jay N. Giedd
Journal of Neuroscience 11 May 2011, 31 (19) 7174-7177; DOI: 10.1523/JNEUROSCI.0054-11.2011
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning
  • Pharmacologically Counteracting a Phenotypic Difference in Cerebellar GABAA Receptor Response to Alcohol Prevents Excessive Alcohol Consumption in a High Alcohol-Consuming Rodent Genotype
  • Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination
Show more Brief Communications
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.