Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Systems/Cognitive

Reduced Neuronal Inhibition and Coordination of Adolescent Prefrontal Cortex during Motivated Behavior

David A. Sturman and Bita Moghaddam
Journal of Neuroscience 26 January 2011, 31 (4) 1471-1478; DOI: https://doi.org/10.1523/JNEUROSCI.4210-10.2011
David A. Sturman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bita Moghaddam
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Adolescence is a time of both cognitive maturation and vulnerability to several major psychiatric illnesses and drug dependence. There is increasing awareness that behavioral or pharmacological intervention during this period may be critical for disease prevention in susceptible individuals. Therefore, we must attain a deeper understanding of how the adolescent brain processes salient events relevant to motivated behavior. To do this, we recorded single-unit and local field potential activity in the orbitofrontal cortex of rats as they performed a simple reward-driven operant task. Adolescents encoded basic elements of the task differently than adults, indicating that neuronal processing of salient events differs in the two age groups. Entrainment of local field potential oscillations, variance in spike timing, and relative proportions of inhibitory and excitatory responses differed in an event-specific manner. Overall adolescent phasic neural activity was less inhibited and more variable through much of the task. Cortical inhibition is essential for efficient communication between neuronal groups, and reduced inhibitory control of cortical activity has been implicated in schizophrenia and other disorders. Thus, these results suggest that reduced inhibitory responses of adolescent cortical neurons to salient events could be a critical mechanism for some of the increased vulnerabilities of this period.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 31 (4)
Journal of Neuroscience
Vol. 31, Issue 4
26 Jan 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Reduced Neuronal Inhibition and Coordination of Adolescent Prefrontal Cortex during Motivated Behavior
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Reduced Neuronal Inhibition and Coordination of Adolescent Prefrontal Cortex during Motivated Behavior
David A. Sturman, Bita Moghaddam
Journal of Neuroscience 26 January 2011, 31 (4) 1471-1478; DOI: 10.1523/JNEUROSCI.4210-10.2011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Reduced Neuronal Inhibition and Coordination of Adolescent Prefrontal Cortex during Motivated Behavior
David A. Sturman, Bita Moghaddam
Journal of Neuroscience 26 January 2011, 31 (4) 1471-1478; DOI: 10.1523/JNEUROSCI.4210-10.2011
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Systems/Cognitive

  • Episodic Reinstatement in the Medial Temporal Lobe
  • Musical Expertise Induces Audiovisual Integration of Abstract Congruency Rules
  • The Laminar Development of Direction Selectivity in Ferret Visual Cortex
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.