Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Systems/Cognitive

An Olfactory Circuit Increases the Fidelity of Visual Behavior

Dawnis M. Chow, Jamie C. Theobald and Mark A. Frye
Journal of Neuroscience 19 October 2011, 31 (42) 15035-15047; DOI: https://doi.org/10.1523/JNEUROSCI.1736-11.2011
Dawnis M. Chow
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jamie C. Theobald
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark A. Frye
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Multimodal integration allows neural circuits to be activated in a behaviorally context-specific manner. In the case of odor plume tracking by Drosophila, an attractive odorant increases the influence of yaw-optic flow on steering behavior in flight, which enhances visual stability reflexes, resulting in straighter flight trajectories within an odor plume. However, it is not well understood whether context-specific changes in optomotor behavior are the result of an increased sensitivity to motion inputs (e.g., through increased visual attention) or direct scaling of motor outputs (i.e., increased steering gain). We address this question by examining the optomotor behavior of Drosophila melanogaster in a tethered flight assay and demonstrate that whereas olfactory cues decrease the gain of the optomotor response to sideslip optic flow, they concomitantly increase the gain of the yaw optomotor response by enhancing the animal's ability to follow transient visual perturbations. Furthermore, ablating the mushroom bodies (MBs) of the fly brain via larval hydroxyurea (HU) treatment results in a loss of olfaction-dependent increase in yaw optomotor fidelity. By expressing either tetanus toxin light chain or diphtheria toxin in gal4-defined neural circuits, we were able to replicate the loss of function observed in the HU treatment within the lines expressing broadly in the mushroom bodies, but not within specific mushroom body lobes. Finally, we were able to genetically separate the yaw responses and sideslip responses in our behavioral assay. Together, our results implicate the MBs in a fast-acting, memory-independent olfactory modification of a visual reflex that is critical for flight control.

This article is freely available online through the J Neurosci Open Choice option.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 31 (42)
Journal of Neuroscience
Vol. 31, Issue 42
19 Oct 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
An Olfactory Circuit Increases the Fidelity of Visual Behavior
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
An Olfactory Circuit Increases the Fidelity of Visual Behavior
Dawnis M. Chow, Jamie C. Theobald, Mark A. Frye
Journal of Neuroscience 19 October 2011, 31 (42) 15035-15047; DOI: 10.1523/JNEUROSCI.1736-11.2011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
An Olfactory Circuit Increases the Fidelity of Visual Behavior
Dawnis M. Chow, Jamie C. Theobald, Mark A. Frye
Journal of Neuroscience 19 October 2011, 31 (42) 15035-15047; DOI: 10.1523/JNEUROSCI.1736-11.2011
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Systems/Cognitive

  • Episodic Reinstatement in the Medial Temporal Lobe
  • Musical Expertise Induces Audiovisual Integration of Abstract Congruency Rules
  • The Laminar Development of Direction Selectivity in Ferret Visual Cortex
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.