Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Neurobiology of Disease

Sensory Network Dysfunction, Behavioral Impairments, and Their Reversibility in an Alzheimer's β-Amyloidosis Mouse Model

Daniel W. Wesson, Anne H. Borkowski, Gary E. Landreth, Ralph A. Nixon, Efrat Levy and Donald A. Wilson
Journal of Neuroscience 2 November 2011, 31 (44) 15962-15971; DOI: https://doi.org/10.1523/JNEUROSCI.2085-11.2011
Daniel W. Wesson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anne H. Borkowski
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Gary E. Landreth
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ralph A. Nixon
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Efrat Levy
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Donald A. Wilson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The unique vulnerability of the olfactory system to Alzheimer's disease (AD) provides a quintessential translational tool for understanding mechanisms of synaptic dysfunction and pathological progression in the disease. Using the Tg2576 mouse model of β-amyloidosis, we show that aberrant, hyperactive olfactory network activity begins early in life, before detectable behavioral impairments or comparable hippocampal dysfunction and at a time when amyloid-β (Aβ) deposition is restricted to the olfactory bulb (OB). Hyperactive odor-evoked activity in the piriform cortex (PCX) and increased OB–PCX functional connectivity emerged at a time coinciding with olfactory behavior impairments. This hyperactive activity persisted until later in life when the network converted to a hyporesponsive state. This conversion was Aβ-dependent, because liver-X receptor agonist treatment to promote Aβ degradation rescued the hyporesponsive state and olfactory behavior. These data lend evidence to a novel working model of olfactory dysfunction in AD and, complimentary to other recent works, suggest that disease-relevant network dysfunction is highly dynamic and region specific, yet with lasting effects on cognition and behavior.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 31 (44)
Journal of Neuroscience
Vol. 31, Issue 44
2 Nov 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Sensory Network Dysfunction, Behavioral Impairments, and Their Reversibility in an Alzheimer's β-Amyloidosis Mouse Model
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Sensory Network Dysfunction, Behavioral Impairments, and Their Reversibility in an Alzheimer's β-Amyloidosis Mouse Model
Daniel W. Wesson, Anne H. Borkowski, Gary E. Landreth, Ralph A. Nixon, Efrat Levy, Donald A. Wilson
Journal of Neuroscience 2 November 2011, 31 (44) 15962-15971; DOI: 10.1523/JNEUROSCI.2085-11.2011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Sensory Network Dysfunction, Behavioral Impairments, and Their Reversibility in an Alzheimer's β-Amyloidosis Mouse Model
Daniel W. Wesson, Anne H. Borkowski, Gary E. Landreth, Ralph A. Nixon, Efrat Levy, Donald A. Wilson
Journal of Neuroscience 2 November 2011, 31 (44) 15962-15971; DOI: 10.1523/JNEUROSCI.2085-11.2011
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Neurobiology of Disease

  • Rapid and Chronic Ethanol Tolerance Are Composed of Distinct Memory-Like States in Drosophila
  • Retinal Dysfunction in a Mouse Model of HCN1 Genetic Epilepsy
  • Axonal ER Ca2+ Release Selectively Enhances Activity-Independent Glutamate Release in a Huntington Disease Model
Show more Neurobiology of Disease
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.