Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Development/Plasticity/Repair

A Wide Diversity of Cortical GABAergic Interneurons Derives from the Embryonic Preoptic Area

Diego Gelman, Amélie Griveau, Nathalie Dehorter, Anne Teissier, Carolina Varela, Ramón Pla, Alessandra Pierani and Oscar Marín
Journal of Neuroscience 16 November 2011, 31 (46) 16570-16580; DOI: https://doi.org/10.1523/JNEUROSCI.4068-11.2011
Diego Gelman
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amélie Griveau
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nathalie Dehorter
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anne Teissier
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carolina Varela
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ramón Pla
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alessandra Pierani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Oscar Marín
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

GABA-containing (GABAergic) interneurons comprise a very heterogeneous group of cells that are crucial for cortical function. Different classes of interneurons specialize in targeting specific subcellular domains of excitatory pyramidal cells or other interneurons, which provides cortical circuits with an enormous capability for information processing. As in other regions of the CNS, cortical interneuron diversity is thought to emerge from the genetic specification of different groups of progenitor cells within the subpallium. Most cortical interneurons originate from two main regions, the medial and the caudal ganglionic eminences (MGE and CGE, respectively). In addition, it has been shown that progenitors in the embryonic preoptic area (POA) also produce a small population of cortical GABAergic interneurons. Here, we show that the contribution of the POA to the complement of cortical GABAergic interneurons is larger than previously believed. Using genetic fate mapping and in utero transplantation experiments, we demonstrate that Dbx1-expressing progenitor cells in the POA give rise to a small but highly diverse cohort of cortical interneurons, with some neurochemical and electrophysiological characteristics that were previously attributed to MGE- or CGE-derived interneurons. There are, however, some features that seem to distinguish POA-derived interneurons from MGE- or CGE-derived cells, such as their preferential laminar location. These results indicate that the mechanisms controlling the specification of different classes of cortical interneurons might be more complex than previously expected. Together with earlier findings, our results also suggest that the POA generates nearly 10% of the GABAergic interneurons in the cerebral cortex of the mouse.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 31 (46)
Journal of Neuroscience
Vol. 31, Issue 46
16 Nov 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Wide Diversity of Cortical GABAergic Interneurons Derives from the Embryonic Preoptic Area
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
A Wide Diversity of Cortical GABAergic Interneurons Derives from the Embryonic Preoptic Area
Diego Gelman, Amélie Griveau, Nathalie Dehorter, Anne Teissier, Carolina Varela, Ramón Pla, Alessandra Pierani, Oscar Marín
Journal of Neuroscience 16 November 2011, 31 (46) 16570-16580; DOI: 10.1523/JNEUROSCI.4068-11.2011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A Wide Diversity of Cortical GABAergic Interneurons Derives from the Embryonic Preoptic Area
Diego Gelman, Amélie Griveau, Nathalie Dehorter, Anne Teissier, Carolina Varela, Ramón Pla, Alessandra Pierani, Oscar Marín
Journal of Neuroscience 16 November 2011, 31 (46) 16570-16580; DOI: 10.1523/JNEUROSCI.4068-11.2011
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Development/Plasticity/Repair

  • Structural and functional development of inhibitory connections from the medial nucleus of the trapezoid body to the superior paraolivary nucleus
  • Presynaptic kainate receptors onto somatostatin interneurons are recruited by activity throughout development and contribute to cortical sensory adaptation
  • Notch signaling plays a dual role in regulating the neuron-to-oligodendrocyte switch in the developing dorsal forebrain
Show more Development/Plasticity/Repair
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.