Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Brief Communications

Amping Up Effort: Effects of d-Amphetamine on Human Effort-Based Decision-Making

Margaret C. Wardle, Michael T. Treadway, Leah M. Mayo, David H. Zald and Harriet de Wit
Journal of Neuroscience 16 November 2011, 31 (46) 16597-16602; DOI: https://doi.org/10.1523/JNEUROSCI.4387-11.2011
Margaret C. Wardle
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michael T. Treadway
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Leah M. Mayo
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David H. Zald
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Harriet de Wit
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Animal studies suggest the neurotransmitter dopamine (DA) plays an important role in decision-making. In rats, DA depletion decreases tolerance for effort and probability costs, while drugs enhancing DA increase tolerance for these costs. However, data regarding the effect of DA manipulations on effort and probability costs in humans remain scarce. The current study examined acute effects of d-amphetamine, an indirect DA agonist, on willingness of healthy human volunteers to exert effort for monetary rewards at varying levels of reward value and reward probability. Based on preclinical research, we predicted amphetamine would increase exertion of effort, particularly when reward probability was low. Over three sessions, 17 healthy normal adults received placebo, d-amphetamine 10 mg, and 20 mg under counterbalanced double-blind conditions and completed the Effort Expenditure for Rewards Task. Consistent with predictions, amphetamine enhanced willingness to exert effort, particularly when reward probability was lower. Amphetamine did not alter effects of reward magnitude on willingness to exert effort. Amphetamine sped task performance, but its psychomotor effects were not strongly related to its effects on decision-making. This is the first demonstration in humans that dopaminergic manipulations alter willingness to exert effort for rewards. These findings help elucidate neurochemical substrates of choice, with implications for neuropsychiatric diseases characterized by dopaminergic dysfunction and motivational deficits.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 31 (46)
Journal of Neuroscience
Vol. 31, Issue 46
16 Nov 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Amping Up Effort: Effects of d-Amphetamine on Human Effort-Based Decision-Making
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Amping Up Effort: Effects of d-Amphetamine on Human Effort-Based Decision-Making
Margaret C. Wardle, Michael T. Treadway, Leah M. Mayo, David H. Zald, Harriet de Wit
Journal of Neuroscience 16 November 2011, 31 (46) 16597-16602; DOI: 10.1523/JNEUROSCI.4387-11.2011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Amping Up Effort: Effects of d-Amphetamine on Human Effort-Based Decision-Making
Margaret C. Wardle, Michael T. Treadway, Leah M. Mayo, David H. Zald, Harriet de Wit
Journal of Neuroscience 16 November 2011, 31 (46) 16597-16602; DOI: 10.1523/JNEUROSCI.4387-11.2011
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning
  • Pharmacologically Counteracting a Phenotypic Difference in Cerebellar GABAA Receptor Response to Alcohol Prevents Excessive Alcohol Consumption in a High Alcohol-Consuming Rodent Genotype
  • Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination
Show more Brief Communications
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.