Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Systems/Cognitive

Cerebellar Plasticity and the Automation of First-Order Rules

Joshua H. Balsters and Narender Ramnani
Journal of Neuroscience 9 February 2011, 31 (6) 2305-2312; DOI: https://doi.org/10.1523/JNEUROSCI.4358-10.2011
Joshua H. Balsters
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Narender Ramnani
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Theories of corticocerebellar function propose roles for the cerebellum in automating motor control, a process thought to depend on plasticity in cerebellar circuits that exchange information with the motor cortex. Little is known, however, about automating behaviors beyond the motor domain. The present study tested the hypothesis that cerebellar plasticity also subserves the development of automaticity in behavior based on low-order rules. Human subjects were required to learn two sets of first-order rules in which visual stimuli of different shapes each arbitrarily instructed a particular finger movement. We used event-related functional magnetic resonance imaging to scan subjects while these response rules became increasingly automatic with practice, as assessed with a dual-task procedure. We found that the amplitude of the blood oxygenation level-dependent signal gradually decreased as a function of practice, as responses became increasingly automatic, and that this effect was greater for a set of rules that became automatic rapidly compared with a second set, which became automatic more slowly. These trial-by-trial activity changes occurred in Crus I of cerebellar cortical lobule HVIIA, in which neurons exchange information with the prefrontal cortex rather than the motor cortex. Activity in Crus I was time locked specifically to the processing of these rules, rather than to subsequent actions. The results support the hypothesis that decreases in cerebellar cortical activity underlie the automation of behavior, whether related to motor control and motor cortex or to response rules and prefrontal cortex.

This article is freely available online through the J Neurosci Open Choice option.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 31 (6)
Journal of Neuroscience
Vol. 31, Issue 6
9 Feb 2011
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cerebellar Plasticity and the Automation of First-Order Rules
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Cerebellar Plasticity and the Automation of First-Order Rules
Joshua H. Balsters, Narender Ramnani
Journal of Neuroscience 9 February 2011, 31 (6) 2305-2312; DOI: 10.1523/JNEUROSCI.4358-10.2011

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Cerebellar Plasticity and the Automation of First-Order Rules
Joshua H. Balsters, Narender Ramnani
Journal of Neuroscience 9 February 2011, 31 (6) 2305-2312; DOI: 10.1523/JNEUROSCI.4358-10.2011
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Systems/Cognitive

  • Influence of Reward on Corticospinal Excitability during Movement Preparation
  • Identification and Characterization of a Sleep-Active Cell Group in the Rostral Medullary Brainstem
  • Gravin Orchestrates Protein Kinase A and β2-Adrenergic Receptor Signaling Critical for Synaptic Plasticity and Memory
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.