Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Systems/Cognitive

Irrational Choice under Uncertainty Correlates with Lower Striatal D2/3 Receptor Binding in Rats

Paul J. Cocker, Katherine Dinelle, Rick Kornelson, Vesna Sossi and Catharine A. Winstanley
Journal of Neuroscience 31 October 2012, 32 (44) 15450-15457; https://doi.org/10.1523/JNEUROSCI.0626-12.2012
Paul J. Cocker
1Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katherine Dinelle
2Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Rick Kornelson
2Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Vesna Sossi
2Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada, and
3Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Catharine A. Winstanley
1Department of Psychology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Article Figures & Data

Figures

  • Figure 1.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 1.

    Schematic diagram showing the trial structure for the betting task. The rat initiated each trial by making a nosepoke response at the illuminated food tray. The tray light was then extinguished, and 1–3 response holes were illuminated, signaling the size of the bet or wager (1–3 sugar pellets). A nosepoke response at an illuminated aperture turned off the light inside it. Once all the aperture lights had been extinguished in this manner, two levers were presented to the rat. Selection of the uncertain lever resulted in a 50:50 chance of receiving either double the wager or nothing, whereas selection of the safe lever always lead to delivery of the wager. The trial was scored as a choice omission if the rat failed to choose one of the levers within 10 s. Likewise, if the rat failed to respond at each illuminated response hole within 10 s, the trial was scored as a hole omission.

  • Figure 2.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 2.

    Rats exhibit individual differences in preference for the uncertain reward, and this determines the response to amphetamine and eticlopride. a, Wager-sensitive rats shifted their preference as the bet size increased, whereas the choice pattern of wager-insensitive rats did not change. b, The degree of wager sensitivity shown by each rat, as indicated by the gradient (m) of the line obtained by plotting choice of the uncertain lever against bet size. c, d, Amphetamine increased choice of the uncertain option in wager-sensitive (c) but not wager-insensitive rats (d). e, f, In contrast, eticlopride had no effect in wager-sensitive rats (e), but decreased uncertain choice in wager-insensitive animals (f). Data shown are mean ± SEM.

  • Figure 3.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 3.

    Lack of effect of the D1 receptor antagonist SCH 23390 on choice behavior. SCH 23390 did not alter preference for the uncertain lever at any bet size in either wager-sensitive (a) or wager-insensitive (b) rats. Data shown are mean ± SEM.

  • Figure 4.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 4.

    Wager sensitivity correlates with striatal D2/3 receptor density. a, b, Striatal D2/3 receptor availability, measured by (a) PET as a tissue input BPND and (b) autoradiography using [11C]raclopride, predicts wager sensitivity as estimated by coefficient m (high negative values indicate high wager sensitivity). c, d, D2/3 receptor availability in a wager-insensitive animal as measured by PET and autoradiography respectively. e, f, The same data from a wager-sensitive rat. Data are shown on the same scale. The binding measurements obtained from PET and autoradiography analyses were strongly correlated (r2 = 0.60, p = 0.02).

  • Figure 5.
    • Download figure
    • Open in new tab
    • Download powerpoint
    Figure 5.

    Null relationship between the degree of wager-sensitivity and [3H]SCH 23390 binding to D1 receptors in the striatum. Wager-sensitivity could not be predicted from striatal D1 receptor binding.

Back to top

In this issue

The Journal of Neuroscience: 32 (44)
Journal of Neuroscience
Vol. 32, Issue 44
31 Oct 2012
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Irrational Choice under Uncertainty Correlates with Lower Striatal D2/3 Receptor Binding in Rats
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Irrational Choice under Uncertainty Correlates with Lower Striatal D2/3 Receptor Binding in Rats
Paul J. Cocker, Katherine Dinelle, Rick Kornelson, Vesna Sossi, Catharine A. Winstanley
Journal of Neuroscience 31 October 2012, 32 (44) 15450-15457; DOI: 10.1523/JNEUROSCI.0626-12.2012

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Irrational Choice under Uncertainty Correlates with Lower Striatal D2/3 Receptor Binding in Rats
Paul J. Cocker, Katherine Dinelle, Rick Kornelson, Vesna Sossi, Catharine A. Winstanley
Journal of Neuroscience 31 October 2012, 32 (44) 15450-15457; DOI: 10.1523/JNEUROSCI.0626-12.2012
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles

Behavioral/Systems/Cognitive

  • Influence of Reward on Corticospinal Excitability during Movement Preparation
  • Identification and Characterization of a Sleep-Active Cell Group in the Rostral Medullary Brainstem
  • Gravin Orchestrates Protein Kinase A and β2-Adrenergic Receptor Signaling Critical for Synaptic Plasticity and Memory
Show more Behavioral/Systems/Cognitive
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.