Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Cellular/Molecular

Neural Progenitor Cells Regulate Capillary Blood Flow in the Postnatal Subventricular Zone

Benjamin Lacar, Peter Herman, Jean-Claude Platel, Cathryn Kubera, Fahmeed Hyder and Angelique Bordey
Journal of Neuroscience 14 November 2012, 32 (46) 16435-16448; DOI: https://doi.org/10.1523/JNEUROSCI.1457-12.2012
Benjamin Lacar
1Department of Neurosurgery and Cellular and Molecular Physiology,
6Yale University Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut 06520-8082
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Peter Herman
2Diagnostic Radiology,
4Magnetic Resonance Research Center,
5Core Center for Quantitative Neuroscience with Magnetic Resonance, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jean-Claude Platel
1Department of Neurosurgery and Cellular and Molecular Physiology,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Cathryn Kubera
1Department of Neurosurgery and Cellular and Molecular Physiology,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fahmeed Hyder
2Diagnostic Radiology,
3Biomedical Engineering,
4Magnetic Resonance Research Center,
5Core Center for Quantitative Neuroscience with Magnetic Resonance, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Angelique Bordey
1Department of Neurosurgery and Cellular and Molecular Physiology,
6Yale University Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut 06520-8082
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

In the postnatal subventricular zone (SVZ), S phase entry of neural progenitor cells (NPCs) correlates with a local increase in blood flow. However, the cellular mechanism controlling this hemodynamic response remains unknown. We show that a subpopulation of SVZ cells, astrocyte-like cells or B-cells, sends projections ensheathing pericytes on SVZ capillaries in young mice. We examined whether calcium increases in pericytes or B-cells led to a vascular response in acute slices using the P2Y2/4 receptor (P2Y2/4R) agonist UTP, electrical stimulation, or transgenic mice expressing exogenous Gq-coupled receptors (MrgA1) in B-cells. UTP increased calcium in pericytes leading to capillary constrictions. Electrical stimulation induced calcium propagation in SVZ cells followed by capillary constrictions involving purinergic receptors. In transgenic mice, selective calcium increases in B-cells induced P2Y2/4R-dependent capillary constrictions, suggesting that B-cells release ATP activating purinergic receptors on pericytes. Interestingly, in the presence of a P2Y2/4R blocker, dilation was observed. Intraventricular UTP injection transiently decreased blood flow monitored in vivo using laser Doppler flowmetry. Using neonatal electroporation, we expressed MrgA1 in slow cycling radial glia-derived B1 cells, i.e., NPCs. Intraventricular injection of an MrgA1 ligand increased blood flow in the SVZ. Thus, upon intracellular calcium increases B-cells/NPCs release ATP and vasodilating factors that activate purinergic receptors on pericytes triggering a vascular response and blood flow increase in vivo. Considering that NPCs receive signals from other SVZ cells, these findings further suggest that NPCs act as transducers of neurometabolic coupling in the SVZ.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 32 (46)
Journal of Neuroscience
Vol. 32, Issue 46
14 Nov 2012
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neural Progenitor Cells Regulate Capillary Blood Flow in the Postnatal Subventricular Zone
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Neural Progenitor Cells Regulate Capillary Blood Flow in the Postnatal Subventricular Zone
Benjamin Lacar, Peter Herman, Jean-Claude Platel, Cathryn Kubera, Fahmeed Hyder, Angelique Bordey
Journal of Neuroscience 14 November 2012, 32 (46) 16435-16448; DOI: 10.1523/JNEUROSCI.1457-12.2012

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Neural Progenitor Cells Regulate Capillary Blood Flow in the Postnatal Subventricular Zone
Benjamin Lacar, Peter Herman, Jean-Claude Platel, Cathryn Kubera, Fahmeed Hyder, Angelique Bordey
Journal of Neuroscience 14 November 2012, 32 (46) 16435-16448; DOI: 10.1523/JNEUROSCI.1457-12.2012
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Notes
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Cellular/Molecular

  • Carbogen-induced respiratory acidosis blocks experimental seizures by a direct and specific inhibition of NaV1.2 channels in the axon initial segment of pyramidal neurons
  • Synaptotagmin 9 Modulates Spontaneous Neurotransmitter Release in Striatal Neurons by Regulating Substance P Secretion
  • Indirect Effects of Halorhodopsin Activation: Potassium Redistribution, Nonspecific Inhibition, and Spreading Depolarization
Show more Cellular/Molecular
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.