Abstract
Serine-arginine protein kinases 2 (SRPK2) is a cell cycle-regulated kinase that phosphorylates serine/arginine domain-containing proteins and mediates pre-mRNA splicing with unclear function in neurons. Here, we show that SRPK2 phosphorylates tau on S214, suppresses tau-dependent microtubule polymerization, and inhibits axonal elongation in neurons. Depletion of SRPK2 in dentate gyrus inhibits tau phosphorylation in APP/PS1 mouse and alleviates the impaired cognitive behaviors. The defective LTP in APP/PS1 mice is also improved after SRPK2 depletion. Moreover, active SRPK2 is increased in the cortex of APP/PS1 mice and the pathological structures of human Alzheimer's disease (AD) brain. Therefore, our study suggests SRPK2 may contribute to the formation of hyperphosphorylated tau and the pathogenesis of AD.