Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Systems/Circuits

Cancelling Prism Adaptation by a Shift of Background: A Novel Utility of Allocentric Coordinates for Extracting Motor Errors

Motoaki Uchimura and Shigeru Kitazawa
Journal of Neuroscience 24 April 2013, 33 (17) 7595-7602; DOI: https://doi.org/10.1523/JNEUROSCI.5702-12.2013
Motoaki Uchimura
1Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, and
2Department of Brain Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565–0871, Japan,
4Department of Neurophysiology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo 113-8421, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shigeru Kitazawa
1Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, and
2Department of Brain Physiology, Graduate School of Medicine, Osaka University, Suita, Osaka 565–0871, Japan,
3Center for Information and Neural Networks, National Institute of Information and Communications Technology and Osaka University, Suita, Osaka 565-0871, Japan, and
4Department of Neurophysiology, Graduate School of Medicine, Juntendo University, Bunkyo, Tokyo 113-8421, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Many previous studies have reported that our brains are able to encode a target position not only in body-centered coordinates but also in terms of landmarks in the background. The importance of such allocentric memory increases when we are forced to complete a delayed reaching task after the target has disappeared. However, the merit of allocentric memory in natural situations in which we are free to make an immediate reach toward a target has remained elusive. We hypothesized that allocentric memory is essential even in an immediate reach for dissociating between error attributable to the motor system and error attributable to target motion. We show here in humans that prism adaptation, that is, adaptation of reaching movements in response to errors attributable to displacement of the visual field, can be cancelled or enhanced simply by moving the background in mid-flight of the reaching movement. The results provide direct evidence for the novel contribution of allocentric memory in providing information on “where I intended to go,” thereby discriminating the effect of target motion from the error resulting from the issued motor control signals.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 33 (17)
Journal of Neuroscience
Vol. 33, Issue 17
24 Apr 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Cancelling Prism Adaptation by a Shift of Background: A Novel Utility of Allocentric Coordinates for Extracting Motor Errors
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Cancelling Prism Adaptation by a Shift of Background: A Novel Utility of Allocentric Coordinates for Extracting Motor Errors
Motoaki Uchimura, Shigeru Kitazawa
Journal of Neuroscience 24 April 2013, 33 (17) 7595-7602; DOI: 10.1523/JNEUROSCI.5702-12.2013

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Cancelling Prism Adaptation by a Shift of Background: A Novel Utility of Allocentric Coordinates for Extracting Motor Errors
Motoaki Uchimura, Shigeru Kitazawa
Journal of Neuroscience 24 April 2013, 33 (17) 7595-7602; DOI: 10.1523/JNEUROSCI.5702-12.2013
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Systems/Circuits

  • Neuromedin B-expressing neurons in the retrotrapezoid nucleus regulate respiratory homeostasis and promote stable breathing in adult mice
  • A visual pathway into central complex for high frequency motion-defined bars in Drosophila
  • Fast-Spiking Interneurons of the Premotor Cortex Contribute to Initiation and Execution of Spontaneous Actions
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.