Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Cognitive

A Substantial and Unexpected Enhancement of Motion Perception in Autism

Jennifer H. Foss-Feig, Duje Tadin, Kimberly B. Schauder and Carissa J. Cascio
Journal of Neuroscience 8 May 2013, 33 (19) 8243-8249; DOI: https://doi.org/10.1523/JNEUROSCI.1608-12.2013
Jennifer H. Foss-Feig
1Department of Psychology and Human Development, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Duje Tadin
3Center for Visual Science, Department of Brain and Cognitive Sciences and Department of Ophthalmology, University of Rochester, Rochester, New York 14627, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kimberly B. Schauder
4Department of Psychiatry, Vanderbilt University, Nashville, Tennessee 37212
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Carissa J. Cascio
2Vanderbilt Kennedy Center, Vanderbilt University, Nashville, Tennessee 37203,
4Department of Psychiatry, Vanderbilt University, Nashville, Tennessee 37212
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

This article has a correction. Please see:

  • Erratum: Foss-Feig et al., A Substantial and Unexpected Enhancement of Motion Perception in Autism - June 19, 2013

Abstract

Atypical perceptual processing in autism spectrum disorder (ASD) is well documented. In addition, growing evidence supports the hypothesis that an excitatory/inhibitory neurochemical imbalance might underlie ASD. Here we investigated putative behavioral consequences of the excitatory/inhibitory imbalance in the context of visual motion perception. As stimulus size increases, typical observers exhibit marked impairments in perceiving motion of high-contrast stimuli. This result, termed “spatial suppression,” is believed to reflect inhibitory motion-processing mechanisms. Motion processing is also affected by gain control, an inhibitory mechanism that underlies saturation of neural responses at high contrast. Motivated by these behavioral correlates of inhibitory function, we investigated motion perception in human children with ASD (n = 20) and typical development (n = 26). At high contrast, both groups exhibited similar impairments in motion perception with increasing stimulus size, revealing no apparent differences in spatial suppression. However, there was a substantial enhancement of motion perception in ASD: children with ASD exhibited a consistent twofold improvement in perceiving motion. Hypothesizing that this enhancement might indicate abnormal weakening of response gain control, we repeated our measurements at low contrast, where the effects of gain control should be negligible. At low contrast, we indeed found no group differences in motion discrimination thresholds. These low-contrast results, however, revealed weaker spatial suppression in ASD, suggesting the possibility that gain control abnormalities in ASD might have masked spatial suppression differences at high contrast. Overall, we report a pattern of motion perception abnormalities in ASD that includes substantial enhancements at high contrast and is consistent with an underlying excitatory/inhibitory imbalance.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 33 (19)
Journal of Neuroscience
Vol. 33, Issue 19
8 May 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Substantial and Unexpected Enhancement of Motion Perception in Autism
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
A Substantial and Unexpected Enhancement of Motion Perception in Autism
Jennifer H. Foss-Feig, Duje Tadin, Kimberly B. Schauder, Carissa J. Cascio
Journal of Neuroscience 8 May 2013, 33 (19) 8243-8249; DOI: 10.1523/JNEUROSCI.1608-12.2013

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A Substantial and Unexpected Enhancement of Motion Perception in Autism
Jennifer H. Foss-Feig, Duje Tadin, Kimberly B. Schauder, Carissa J. Cascio
Journal of Neuroscience 8 May 2013, 33 (19) 8243-8249; DOI: 10.1523/JNEUROSCI.1608-12.2013
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Cognitive

  • Disentangling Object Category Representations Driven by Dynamic and Static Visual Input
  • Irrelevant Threats Linger and Affect Behavior in High Anxiety
  • Multisession Anodal Transcranial Direct Current Stimulation Enhances Adult Hippocampal Neurogenesis and Context Discrimination in Mice
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.