Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Brief Communications

NMDA and GABAB (KIR) Conductances: The “Perfect Couple” for Bistability

Honi Sanders, Michiel Berends, Guy Major, Mark S. Goldman and John E. Lisman
Journal of Neuroscience 9 January 2013, 33 (2) 424-429; DOI: https://doi.org/10.1523/JNEUROSCI.1854-12.2013
Honi Sanders
1Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02254,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Michiel Berends
2Center for Neuroscience, Department of Neurobiology, Physiology, and Behavior, and Department of Ophthalmology and Visual Sciences, University of California, Davis, Davis, California 95618, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Guy Major
3School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Mark S. Goldman
2Center for Neuroscience, Department of Neurobiology, Physiology, and Behavior, and Department of Ophthalmology and Visual Sciences, University of California, Davis, Davis, California 95618, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
John E. Lisman
1Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02254,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Networks that produce persistent firing in response to novel input patterns are thought to be important in working memory and other information storage functions. One possible mechanism for maintaining persistent firing is dendritic voltage bistability in which the depolarized state depends on the voltage dependence of the NMDA conductance at recurrent synapses. In previous models, the hyperpolarized state is dependent on voltage-independent conductances, including GABAA. The interplay of these conductances leads to bistability, but its robustness is limited by the fact that the conductance ratio must be within a narrow range. The GABAB component of inhibitory transmission was not considered in previous analyses. Here, we show that the voltage dependence of the inwardly rectifying potassium (KIR) conductance activated by GABAB receptors adds substantial robustness to network simulations of bistability and the persistent firing that it underlies. The hyperpolarized state is robust because, at hyperpolarized potentials, the GABAB/KIR conductance is high and the NMDA conductance is low; the depolarized state is robust because, at depolarized potentials, the NMDA conductance is high and the GABAB/KIR conductance is low. Our results suggest that this complementary voltage dependence of GABAB/KIR and NMDA conductances makes them a “perfect couple” for producing voltage bistability.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 33 (2)
Journal of Neuroscience
Vol. 33, Issue 2
9 Jan 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
NMDA and GABAB (KIR) Conductances: The “Perfect Couple” for Bistability
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
NMDA and GABAB (KIR) Conductances: The “Perfect Couple” for Bistability
Honi Sanders, Michiel Berends, Guy Major, Mark S. Goldman, John E. Lisman
Journal of Neuroscience 9 January 2013, 33 (2) 424-429; DOI: 10.1523/JNEUROSCI.1854-12.2013

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
NMDA and GABAB (KIR) Conductances: The “Perfect Couple” for Bistability
Honi Sanders, Michiel Berends, Guy Major, Mark S. Goldman, John E. Lisman
Journal of Neuroscience 9 January 2013, 33 (2) 424-429; DOI: 10.1523/JNEUROSCI.1854-12.2013
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning
  • Pharmacologically Counteracting a Phenotypic Difference in Cerebellar GABAA Receptor Response to Alcohol Prevents Excessive Alcohol Consumption in a High Alcohol-Consuming Rodent Genotype
  • Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination
Show more Brief Communications
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.