Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Systems/Circuits

Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals

D.P. Daberkow, H.D. Brown, K.D. Bunner, S.A. Kraniotis, M.A. Doellman, M.E. Ragozzino, P.A. Garris and M.F. Roitman
Journal of Neuroscience 9 January 2013, 33 (2) 452-463; DOI: https://doi.org/10.1523/JNEUROSCI.2136-12.2013
D.P. Daberkow
1School of Biological Sciences, Cell Biology, Physiology and Development Section, Illinois State University, Normal, Illinois 61790, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
H.D. Brown
2Department of Psychology, University of Illinois at Chicago, Chicago, Illinois 60607
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
K.D. Bunner
1School of Biological Sciences, Cell Biology, Physiology and Development Section, Illinois State University, Normal, Illinois 61790, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
S.A. Kraniotis
1School of Biological Sciences, Cell Biology, Physiology and Development Section, Illinois State University, Normal, Illinois 61790, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.A. Doellman
1School of Biological Sciences, Cell Biology, Physiology and Development Section, Illinois State University, Normal, Illinois 61790, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.E. Ragozzino
2Department of Psychology, University of Illinois at Chicago, Chicago, Illinois 60607
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
P.A. Garris
1School of Biological Sciences, Cell Biology, Physiology and Development Section, Illinois State University, Normal, Illinois 61790, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
M.F. Roitman
2Department of Psychology, University of Illinois at Chicago, Chicago, Illinois 60607
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Drugs of abuse hijack brain-reward circuitry during the addiction process by augmenting action potential-dependent phasic dopamine release events associated with learning and goal-directed behavior. One prominent exception to this notion would appear to be amphetamine (AMPH) and related analogs, which are proposed instead to disrupt normal patterns of dopamine neurotransmission by depleting vesicular stores and promoting nonexocytotic dopamine efflux via reverse transport. This mechanism of AMPH action, though, is inconsistent with its therapeutic effects and addictive properties, which are thought to be reliant on phasic dopamine signaling. Here we used fast-scan cyclic voltammetry in freely moving rats to interrogate principal neurochemical responses to AMPH in the striatum and relate these changes to behavior. First, we showed that AMPH dose-dependently enhanced evoked dopamine responses to phasic-like current pulse trains for up to 2 h. Modeling the data revealed that AMPH inhibited dopamine uptake but also unexpectedly potentiated vesicular dopamine release. Second, we found that AMPH increased the amplitude, duration, and frequency of spontaneous dopamine transients, the naturally occurring, nonelectrically evoked, phasic increases in extracellular dopamine. Finally, using an operant sugar reward paradigm, we showed that low-dose AMPH augmented dopamine transients elicited by sugar-predictive cues. However, operant behavior failed at high-dose AMPH, which was due to phasic dopamine hyperactivity and the decoupling of dopamine transients from the reward predictive cue. These findings identify upregulation of exocytotic dopamine release as a key AMPH action in behaving animals and support a unified mechanism of abused drugs to activate phasic dopamine signaling.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 33 (2)
Journal of Neuroscience
Vol. 33, Issue 2
9 Jan 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals
D.P. Daberkow, H.D. Brown, K.D. Bunner, S.A. Kraniotis, M.A. Doellman, M.E. Ragozzino, P.A. Garris, M.F. Roitman
Journal of Neuroscience 9 January 2013, 33 (2) 452-463; DOI: 10.1523/JNEUROSCI.2136-12.2013

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Amphetamine Paradoxically Augments Exocytotic Dopamine Release and Phasic Dopamine Signals
D.P. Daberkow, H.D. Brown, K.D. Bunner, S.A. Kraniotis, M.A. Doellman, M.E. Ragozzino, P.A. Garris, M.F. Roitman
Journal of Neuroscience 9 January 2013, 33 (2) 452-463; DOI: 10.1523/JNEUROSCI.2136-12.2013
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Systems/Circuits

  • Neural Population Dynamics Underlying Expected Value Computation
  • Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap
  • Chronic stress prevents cortico-accumbens cue encoding and alters conditioned approach
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.