Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles, Systems/Circuits

Functional Circuits and Anatomical Distribution of Response Properties in the Primate Amygdala

Wujie Zhang, David M. Schneider, Marina A. Belova, Sara E. Morrison, Joseph J. Paton and C. Daniel Salzman
Journal of Neuroscience 9 January 2013, 33 (2) 722-733; https://doi.org/10.1523/JNEUROSCI.2970-12.2013
Wujie Zhang
1Departments of Neuroscience and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David M. Schneider
1Departments of Neuroscience and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marina A. Belova
1Departments of Neuroscience and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Sara E. Morrison
1Departments of Neuroscience and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Joseph J. Paton
1Departments of Neuroscience and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
C. Daniel Salzman
1Departments of Neuroscience and
2Psychiatry,
3W.M. Keck Center on Brain Plasticity and Cognition,
4Kavli Institute for Brain Sciences, and
5Mahoney Center for Brain and Behavior, Columbia University, and
6New York State Psychiatric Institute, New York, New York 10032
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recent electrophysiological studies on the primate amygdala have advanced our understanding of how individual neurons encode information relevant to emotional processes, but it remains unclear how these neurons are functionally and anatomically organized. To address this, we analyzed cross-correlograms of amygdala spike trains recorded during a task in which monkeys learned to associate novel images with rewarding and aversive outcomes. Using this task, we have recently described two populations of amygdala neurons: one that responds more strongly to images predicting reward (positive value-coding), and another that responds more strongly to images predicting an aversive stimulus (negative value-coding). Here, we report that these neural populations are organized into distinct, but anatomically intermingled, appetitive and aversive functional circuits, which are dynamically modulated as animals used the images to predict outcomes. Furthermore, we report that responses to sensory stimuli are prevalent in the lateral amygdala, and are also prevalent in the medial amygdala for sensory stimuli that are emotionally significant. The circuits identified here could potentially mediate valence-specific emotional behaviors thought to involve the amygdala.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 33 (2)
Journal of Neuroscience
Vol. 33, Issue 2
9 Jan 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Functional Circuits and Anatomical Distribution of Response Properties in the Primate Amygdala
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Functional Circuits and Anatomical Distribution of Response Properties in the Primate Amygdala
Wujie Zhang, David M. Schneider, Marina A. Belova, Sara E. Morrison, Joseph J. Paton, C. Daniel Salzman
Journal of Neuroscience 9 January 2013, 33 (2) 722-733; DOI: 10.1523/JNEUROSCI.2970-12.2013

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Functional Circuits and Anatomical Distribution of Response Properties in the Primate Amygdala
Wujie Zhang, David M. Schneider, Marina A. Belova, Sara E. Morrison, Joseph J. Paton, C. Daniel Salzman
Journal of Neuroscience 9 January 2013, 33 (2) 722-733; DOI: 10.1523/JNEUROSCI.2970-12.2013
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles

Systems/Circuits

  • Theta Oscillons in Behaving Rats
  • Red Light Sensitivity of Non-image and Image Forming Visual Systems of Laboratory Rodents: Circadian Disruption and Behavioral Detection
  • Neuronal Synchronization and Bidirectional Activity Spread Explain Efficient Swimming in a Whole-Body Model of Hydrozoan Jellyfish
Show more Systems/Circuits
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.