Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Cognitive

Brain Characteristics of Individuals Resisting Age-Related Cognitive Decline over Two Decades

Sara Pudas, Jonas Persson, Maria Josefsson, Xavier de Luna, Lars-Göran Nilsson and Lars Nyberg
Journal of Neuroscience 15 May 2013, 33 (20) 8668-8677; https://doi.org/10.1523/JNEUROSCI.2900-12.2013
Sara Pudas
1Department of Psychology, Stockholm University, 10691 Stockholm, Sweden,
6Umeå Center for Functional Brain Imaging, Umeå University, 90187 Umeå, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jonas Persson
1Department of Psychology, Stockholm University, 10691 Stockholm, Sweden,
2Aging Research Center, Karolinska Institute, 11330 Stockholm, Sweden, and
6Umeå Center for Functional Brain Imaging, Umeå University, 90187 Umeå, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Maria Josefsson
3Department of Statistics, Umeå School of Business and Economics,
6Umeå Center for Functional Brain Imaging, Umeå University, 90187 Umeå, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Xavier de Luna
3Department of Statistics, Umeå School of Business and Economics,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lars-Göran Nilsson
1Department of Psychology, Stockholm University, 10691 Stockholm, Sweden,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lars Nyberg
4Department of Integrative Medical Biology (Physiology),
5Department of Radiation Sciences (Radiology), and
6Umeå Center for Functional Brain Imaging, Umeå University, 90187 Umeå, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Some elderly appear to resist age-related decline in cognitive functions, but the neural correlates of successful cognitive aging are not well known. Here, older human participants from a longitudinal study were classified as successful or average relative to the mean attrition-corrected cognitive development across 15–20 years in a population-based sample (n = 1561). Fifty-one successful elderly and 51 age-matched average elderly (mean age: 68.8 years) underwent functional magnetic resonance imaging while performing an episodic memory face–name paired-associates task. Successful older participants had higher BOLD signal during encoding than average participants, notably in the bilateral PFC and the left hippocampus (HC). The HC activation of the average, but not the successful, older group was lower than that of a young reference group (n = 45, mean age: 35.3 years). HC activation was correlated with task performance, thus likely contributing to the superior memory performance of successful older participants. The frontal BOLD response pattern might reflect individual differences present from young age. Additional analyses confirmed that both the initial cognitive level and the slope of cognitive change across the longitudinal measurement period contributed to the observed group differences in BOLD signal. Further, the differences between the older groups could not be accounted for by differences in brain structure. The current results suggest that one mechanism behind successful cognitive aging might be preservation of HC function combined with a high frontal responsivity. These findings highlight sources for heterogeneity in cognitive aging and may hold useful information for cognitive intervention studies.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 33 (20)
Journal of Neuroscience
Vol. 33, Issue 20
15 May 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Brain Characteristics of Individuals Resisting Age-Related Cognitive Decline over Two Decades
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Brain Characteristics of Individuals Resisting Age-Related Cognitive Decline over Two Decades
Sara Pudas, Jonas Persson, Maria Josefsson, Xavier de Luna, Lars-Göran Nilsson, Lars Nyberg
Journal of Neuroscience 15 May 2013, 33 (20) 8668-8677; DOI: 10.1523/JNEUROSCI.2900-12.2013

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Brain Characteristics of Individuals Resisting Age-Related Cognitive Decline over Two Decades
Sara Pudas, Jonas Persson, Maria Josefsson, Xavier de Luna, Lars-Göran Nilsson, Lars Nyberg
Journal of Neuroscience 15 May 2013, 33 (20) 8668-8677; DOI: 10.1523/JNEUROSCI.2900-12.2013
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles

Behavioral/Cognitive

  • Is It Me or the Train Moving? Humans Resolve Sensory Conflicts with a Nonlinear Feedback Mechanism in Balance Control
  • HDAC3 Serine 424 Phospho-mimic and Phospho-null Mutants Bidirectionally Modulate Long-Term Memory Formation and Synaptic Plasticity in the Adult and Aging Mouse Brain
  • Phospho-CREB Regulation on NMDA Glutamate Receptor 2B and Mitochondrial Calcium Uniporter in the Ventrolateral Periaqueductal Gray Controls Chronic Morphine Withdrawal in Male Rats
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.