Abstract
Hypoxia–ischemia is a common cause of neurological impairments in newborns, but little is known about how neuroinflammation contributes to the long-term outcome after a perinatal brain injury. In this study, we investigated the role of the fractalkine receptor chemokine CX3C motif receptor 1 (CX3CR1) and of toll-like receptor (TLR) signaling after a neonatal hypoxic–ischemic brain injury. Mice deficient in the TLR adaptor proteins Toll/interleukin-1 receptor-domain-containing adaptor protein inducing interferon β (TRIF) or myeloid differentiation factor-88 (MyD88) and CX3CR1 knock-out (KO) mice were subjected to hypoxia–ischemia at postnatal day 3. In situ hybridization was used to evaluate the expression of TLRs during brain development and after hypoxic–ischemic insults. Behavioral deficits, hippocampal damage, reactive microgliosis, and subplate injury were compared among the groups. Although MyD88 KO mice exhibited no differences from wild-type animals in long-term structural and functional outcomes, TRIF KO mice presented a worse outcome, as evidenced by increased hippocampal CA3 atrophy in males and by the development of learning and motor deficits in females. CX3CR1-deficient female mice showed a marked increase in brain damage and long-lasting learning deficits, whereas CX3CR1 KO male animals did not exhibit more brain injury than wild-type mice. These data reveal a novel, gender-specific protective role of TRIF and CX3CR1 signaling in a mouse model of neonatal hypoxic–ischemic brain injury. These findings suggest that future studies seeking immunomodulatory therapies for preterm infants should consider gender as a critical variable and should be cautious not to abrogate the protective role of neuroinflammation.