Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Cognitive

Predictive Suppression of Cortical Excitability and Its Deficit in Schizophrenia

Peter Lakatos, Charles E. Schroeder, David I. Leitman and Daniel C. Javitt
Journal of Neuroscience 10 July 2013, 33 (28) 11692-11702; DOI: https://doi.org/10.1523/JNEUROSCI.0010-13.2013
Peter Lakatos
1Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute, Orangeburg, New York 10962,
2Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York 10032, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Charles E. Schroeder
1Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute, Orangeburg, New York 10962,
2Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York 10032, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David I. Leitman
3Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania 19104
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Daniel C. Javitt
1Cognitive Neuroscience and Schizophrenia Program, Nathan Kline Institute, Orangeburg, New York 10962,
2Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York 10032, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recent neuroscience advances suggest that when interacting with our environment, along with previous experience, we use contextual cues and regularities to form predictions that guide our perceptions and actions. The goal of such active “predictive sensing” is to selectively enhance the processing and representation of behaviorally relevant information in an efficient manner. Since a hallmark of schizophrenia is impaired information selection, we tested whether this deficiency stems from dysfunctional predictive sensing by measuring the degree to which neuronal activity predicts relevant events. In healthy subjects, we established that these mechanisms are engaged in an effort-dependent manner and that, based on a correspondence between human scalp and intracranial nonhuman primate recordings, their main role is a predictive suppression of excitability in task-irrelevant regions. In contrast, schizophrenia patients displayed a reduced alignment of neuronal activity to attended stimuli, which correlated with their behavioral performance deficits and clinical symptoms. These results support the relevance of predictive sensing for normal and aberrant brain function, and highlight the importance of neuronal mechanisms that mold internal ongoing neuronal activity to model key features of the external environment.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 33 (28)
Journal of Neuroscience
Vol. 33, Issue 28
10 Jul 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Predictive Suppression of Cortical Excitability and Its Deficit in Schizophrenia
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Predictive Suppression of Cortical Excitability and Its Deficit in Schizophrenia
Peter Lakatos, Charles E. Schroeder, David I. Leitman, Daniel C. Javitt
Journal of Neuroscience 10 July 2013, 33 (28) 11692-11702; DOI: 10.1523/JNEUROSCI.0010-13.2013

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Predictive Suppression of Cortical Excitability and Its Deficit in Schizophrenia
Peter Lakatos, Charles E. Schroeder, David I. Leitman, Daniel C. Javitt
Journal of Neuroscience 10 July 2013, 33 (28) 11692-11702; DOI: 10.1523/JNEUROSCI.0010-13.2013
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Cognitive

  • Brain functional connectivity mapping of behavioral flexibility in rhesus monkeys
  • Accumulation System: Distributed Neural Substrates of Perceptual Decision Making Revealed by fMRI Deconvolution
  • Recruitment of control and representational components of the semantic system during successful and unsuccessful access to complex factual knowledge
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.