Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Systems/Circuits

Diameter, Length, Speed, and Conduction Delay of Callosal Axons in Macaque Monkeys and Humans: Comparing Data from Histology and Magnetic Resonance Imaging Diffusion Tractography

Roberto Caminiti, Filippo Carducci, Claudia Piervincenzi, Alexandra Battaglia-Mayer, Giuseppina Confalone, Federica Visco-Comandini, Patrizia Pantano and Giorgio M. Innocenti
Journal of Neuroscience 4 September 2013, 33 (36) 14501-14511; DOI: https://doi.org/10.1523/JNEUROSCI.0761-13.2013
Roberto Caminiti
1Departments of Physiology and Pharmacology and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Filippo Carducci
1Departments of Physiology and Pharmacology and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Claudia Piervincenzi
1Departments of Physiology and Pharmacology and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Alexandra Battaglia-Mayer
1Departments of Physiology and Pharmacology and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Giuseppina Confalone
1Departments of Physiology and Pharmacology and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Federica Visco-Comandini
1Departments of Physiology and Pharmacology and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Patrizia Pantano
2Neurology and Psychiatry, SAPIENZA University of Rome, 00185 Rome, Italy, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Giorgio M. Innocenti
3Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Three macaque monkeys and 13 healthy human volunteers underwent diffusion tensor MRI with a 3 Tesla scanner for diffusion tract tracing (DTT) reconstruction of callosal bundles from different areas. In six macaque monkeys and three human subjects, the length of fiber tracts was obtained from histological data and combined with information on the distribution of axon diameter, so as to estimate callosal conduction delays from different areas. The results showed that in monkeys, the spectrum of tract lengths obtained with DTT closely matches that estimated from histological reconstruction of axons labeled with an anterogradely transported tracer. For each sector of the callosum, we obtained very similar conduction delays regardless of whether conduction distance was obtained from tractography or from histological analysis of labeled axons. This direct validation of DTT measurements by histological methods in monkeys was a prerequisite for the computation of the callosal conduction distances and delays in humans, which we had previously obtained by extrapolating the length of callosal axons from that of the monkey, proportionally to the brain volumes in the two species. For this analysis, we used the distribution of axon diameters from four different sectors of the corpus callosum. As in monkeys, in humans the shortest callosal conduction delays were those of motor, somatosensory, and premotor areas; the longer ones were those of temporal, parietal, and visual areas. These results provide the first histological validation of anatomical data about connection length in the primate brain based on DTT imaging.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 33 (36)
Journal of Neuroscience
Vol. 33, Issue 36
4 Sep 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Diameter, Length, Speed, and Conduction Delay of Callosal Axons in Macaque Monkeys and Humans: Comparing Data from Histology and Magnetic Resonance Imaging Diffusion Tractography
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Diameter, Length, Speed, and Conduction Delay of Callosal Axons in Macaque Monkeys and Humans: Comparing Data from Histology and Magnetic Resonance Imaging Diffusion Tractography
Roberto Caminiti, Filippo Carducci, Claudia Piervincenzi, Alexandra Battaglia-Mayer, Giuseppina Confalone, Federica Visco-Comandini, Patrizia Pantano, Giorgio M. Innocenti
Journal of Neuroscience 4 September 2013, 33 (36) 14501-14511; DOI: 10.1523/JNEUROSCI.0761-13.2013

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Diameter, Length, Speed, and Conduction Delay of Callosal Axons in Macaque Monkeys and Humans: Comparing Data from Histology and Magnetic Resonance Imaging Diffusion Tractography
Roberto Caminiti, Filippo Carducci, Claudia Piervincenzi, Alexandra Battaglia-Mayer, Giuseppina Confalone, Federica Visco-Comandini, Patrizia Pantano, Giorgio M. Innocenti
Journal of Neuroscience 4 September 2013, 33 (36) 14501-14511; DOI: 10.1523/JNEUROSCI.0761-13.2013
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Systems/Circuits

  • Development of BOLD Response to Motion in Human Infants
  • On the tonotopy of the low-frequency region of the cochlea
  • Auditory deprivation during development alters efferent neural feedback and perception
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.