Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Cognitive

Distinct Hippocampal Time Cell Sequences Represent Odor Memories in Immobilized Rats

Christopher J. MacDonald, Stephen Carrow, Ryan Place and Howard Eichenbaum
Journal of Neuroscience 4 September 2013, 33 (36) 14607-14616; DOI: https://doi.org/10.1523/JNEUROSCI.1537-13.2013
Christopher J. MacDonald
Department of Psychology and the Center for Memory and Brain, Boston University, Boston, Massachusetts 02215
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stephen Carrow
Department of Psychology and the Center for Memory and Brain, Boston University, Boston, Massachusetts 02215
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ryan Place
Department of Psychology and the Center for Memory and Brain, Boston University, Boston, Massachusetts 02215
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Howard Eichenbaum
Department of Psychology and the Center for Memory and Brain, Boston University, Boston, Massachusetts 02215
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Previous studies have revealed the existence of hippocampal “time cells,” principal neurons in CA1 that fire at specific moments in temporally organized experiences. However, in all these studies, animals were in motion; and so, temporal modulation might be due, at least in part, to concurrent or planned movement through space or self-generated movement (path integration). Here the activity of hippocampal CA1 neurons was recorded in head-fixed and immobile rats while they remembered odor stimuli across a delay period. Many neurons selectively and reliably activated at brief moments during the delay, as confirmed by several analyses of temporal modulation, during a strong ongoing θ rhythm. Furthermore, each odor memory was represented by a temporally organized ensemble of time cells composed mostly of neurons that were unique to each memory and some that fired at the same or different moments among multiple memories. These results indicate that ongoing or intended movement through space is not necessary for temporal representations in the hippocampus, and highlight the potential role of time cells as a mechanism for representing the flow of time in distinct memories.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 33 (36)
Journal of Neuroscience
Vol. 33, Issue 36
4 Sep 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Distinct Hippocampal Time Cell Sequences Represent Odor Memories in Immobilized Rats
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Distinct Hippocampal Time Cell Sequences Represent Odor Memories in Immobilized Rats
Christopher J. MacDonald, Stephen Carrow, Ryan Place, Howard Eichenbaum
Journal of Neuroscience 4 September 2013, 33 (36) 14607-14616; DOI: 10.1523/JNEUROSCI.1537-13.2013

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Distinct Hippocampal Time Cell Sequences Represent Odor Memories in Immobilized Rats
Christopher J. MacDonald, Stephen Carrow, Ryan Place, Howard Eichenbaum
Journal of Neuroscience 4 September 2013, 33 (36) 14607-14616; DOI: 10.1523/JNEUROSCI.1537-13.2013
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Cognitive

  • Signatures of Electrical Stimulation Driven Network Interactions in the Human Limbic System
  • Dissociable Neural Mechanisms Underlie the Effects of Attention on Visual Appearance and Response Bias
  • Rhythmic Entrainment Echoes in Auditory Perception
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.