Abstract
The medial frontal cortex has been thought to be crucially involved in temporal structuring of behavior in monkeys and humans. We examined neuronal activity in the supplementary and presupplementary motor areas of monkeys to investigate how the nervous system deals with the coding of 16 motor sequences resulting from multiple actions involving bilateral use of the arms. We first found in both areas that this behavioral demand resulted in attribute-based representation of individual motor acts, reflecting functional (action) or anatomical (right/left arm) attributes. Actions were frequently represented according to a body-axis-centered reference frame (supination or pronation) regardless of the arm to be used. Moreover, behavioral sequences were primarily represented with respect to the action- or arm-use sequence rather than the sequence of individual movements. We propose that the two-dimensional attribute-based sequence representation provides a robust and efficient means of processing multiple behavioral sequences.