Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Cognitive

The Hand Sees Visual Periphery Better Than the Eye: Motor-Dependent Visual Motion Analyses

Hiroaki Gomi, Naotoshi Abekawa and Shinsuke Shimojo
Journal of Neuroscience 16 October 2013, 33 (42) 16502-16509; DOI: https://doi.org/10.1523/JNEUROSCI.4741-12.2013
Hiroaki Gomi
1NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Morinosato, Atsugi, Kanagawa 243-0198, Japan,
3CREST, Japan Science and Technology, Kawaguchi, Saitama 332-0012, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Naotoshi Abekawa
1NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Morinosato, Atsugi, Kanagawa 243-0198, Japan,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Shinsuke Shimojo
2Division of Biology, California Institute of Technology, Pasadena, California 91125, and
3CREST, Japan Science and Technology, Kawaguchi, Saitama 332-0012, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Information pertaining to visual motion is used in the brain not only for conscious perception but also for various kinds of motor controls. In contrast to the increasing amount of evidence supporting the dissociation of visual processing for action versus perception, it is less clear whether the analysis of visual input is shared for characterizing various motor outputs, which require different kinds of interactions with environments. Here we show that, in human visuomotor control, motion analysis for quick hand control is distinct from that for quick eye control in terms of spatiotemporal analysis and spatial integration. The amplitudes of implicit and quick hand and eye responses induced by visual motion stimuli differently varied with stimulus size and pattern smoothness (e.g., spatial frequency). Surprisingly, the hand response did not decrease even when the visual motion with a coarse pattern was mostly occluded over the visual center, whereas the eye response markedly decreased. Since these contrasts cannot be ascribed to any difference in motor dynamics, they clearly indicate different spatial integration of visual motion for the individual motor systems. Going against the overly unified hierarchical view of visual analysis, our data suggest that visual motion analyses are separately tailored from early levels to individual motor modalities. Namely, the hand and eyes see the external world differently.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 33 (42)
Journal of Neuroscience
Vol. 33, Issue 42
16 Oct 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The Hand Sees Visual Periphery Better Than the Eye: Motor-Dependent Visual Motion Analyses
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
The Hand Sees Visual Periphery Better Than the Eye: Motor-Dependent Visual Motion Analyses
Hiroaki Gomi, Naotoshi Abekawa, Shinsuke Shimojo
Journal of Neuroscience 16 October 2013, 33 (42) 16502-16509; DOI: 10.1523/JNEUROSCI.4741-12.2013

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
The Hand Sees Visual Periphery Better Than the Eye: Motor-Dependent Visual Motion Analyses
Hiroaki Gomi, Naotoshi Abekawa, Shinsuke Shimojo
Journal of Neuroscience 16 October 2013, 33 (42) 16502-16509; DOI: 10.1523/JNEUROSCI.4741-12.2013
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Cognitive

  • Disentangling Object Category Representations Driven by Dynamic and Static Visual Input
  • Irrelevant Threats Linger and Affect Behavior in High Anxiety
  • Multisession Anodal Transcranial Direct Current Stimulation Enhances Adult Hippocampal Neurogenesis and Context Discrimination in Mice
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.