Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles, Systems/Circuits

Older Adults Benefit from Music Training Early in Life: Biological Evidence for Long-Term Training-Driven Plasticity

Travis White-Schwoch, Kali Woodruff Carr, Samira Anderson, Dana L. Strait and Nina Kraus
Journal of Neuroscience 6 November 2013, 33 (45) 17667-17674; https://doi.org/10.1523/JNEUROSCI.2560-13.2013
Travis White-Schwoch
1Auditory Neuroscience Laboratory,
2Department of Communication Sciences,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Kali Woodruff Carr
1Auditory Neuroscience Laboratory,
2Department of Communication Sciences,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Samira Anderson
1Auditory Neuroscience Laboratory,
2Department of Communication Sciences,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Dana L. Strait
1Auditory Neuroscience Laboratory,
3Institute for Neuroscience,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Nina Kraus
1Auditory Neuroscience Laboratory,
2Department of Communication Sciences,
3Institute for Neuroscience,
4Department of Neurobiology & Physiology,
5Department of Otolaryngology, Northwestern University, Evanston, Illinois 60208
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Aging results in pervasive declines in nervous system function. In the auditory system, these declines include neural timing delays in response to fast-changing speech elements; this causes older adults to experience difficulty understanding speech, especially in challenging listening environments. These age-related declines are not inevitable, however: older adults with a lifetime of music training do not exhibit neural timing delays. Yet many people play an instrument for a few years without making a lifelong commitment. Here, we examined neural timing in a group of human older adults who had nominal amounts of music training early in life, but who had not played an instrument for decades. We found that a moderate amount (4–14 years) of music training early in life is associated with faster neural timing in response to speech later in life, long after training stopped (>40 years). We suggest that early music training sets the stage for subsequent interactions with sound. These experiences may interact over time to sustain sharpened neural processing in central auditory nuclei well into older age.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 33 (45)
Journal of Neuroscience
Vol. 33, Issue 45
6 Nov 2013
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Older Adults Benefit from Music Training Early in Life: Biological Evidence for Long-Term Training-Driven Plasticity
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Older Adults Benefit from Music Training Early in Life: Biological Evidence for Long-Term Training-Driven Plasticity
Travis White-Schwoch, Kali Woodruff Carr, Samira Anderson, Dana L. Strait, Nina Kraus
Journal of Neuroscience 6 November 2013, 33 (45) 17667-17674; DOI: 10.1523/JNEUROSCI.2560-13.2013

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Older Adults Benefit from Music Training Early in Life: Biological Evidence for Long-Term Training-Driven Plasticity
Travis White-Schwoch, Kali Woodruff Carr, Samira Anderson, Dana L. Strait, Nina Kraus
Journal of Neuroscience 6 November 2013, 33 (45) 17667-17674; DOI: 10.1523/JNEUROSCI.2560-13.2013
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles

Systems/Circuits

  • Chemogenetic disruption of monkey perirhinal neurons projecting to rostromedial caudate impairs associative learning
  • Specializations in amygdalar and hippocampal innervation of the primate nucleus accumbens shell
  • The Administration of Ketamine Is Associated with Dose-Dependent Stabilization of Cortical Dynamics in Humans
Show more Systems/Circuits
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.