Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Behavioral/Cognitive

Neural Mechanisms of Gain–Loss Asymmetry in Temporal Discounting

Saori C. Tanaka, Katsunori Yamada, Hiroyasu Yoneda and Fumio Ohtake
Journal of Neuroscience 16 April 2014, 34 (16) 5595-5602; DOI: https://doi.org/10.1523/JNEUROSCI.5169-12.2014
Saori C. Tanaka
1Department of Cognitive Neuroscience, ATR Brain Information Communication Research Laboratory Group, Kyoto 619-0288, Japan,
2Institute of Social and Economic Research, Osaka University, Osaka 567-0047, Japan,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Katsunori Yamada
2Institute of Social and Economic Research, Osaka University, Osaka 567-0047, Japan,
3Faculty of Economics, Kindai University, Higashi-Osaka 577-0813, Japan, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Hiroyasu Yoneda
4Pharmaceutical Policy & Health Economics, Kyoto University, Kyoto 606-8501, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Fumio Ohtake
2Institute of Social and Economic Research, Osaka University, Osaka 567-0047, Japan,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Humans typically discount future gains more than losses. This phenomenon is referred to as the “sign effect” in experimental and behavioral economics. Although recent studies have reported associations between the sign effect and important social problems, such as obesity and incurring multiple debts, the biological basis for this phenomenon remains poorly understood. Here, we hypothesized that enhanced loss-related neural processing in magnitude and/or delay representation are causes of the sign effect. We examined participants performing intertemporal choice tasks involving future gains or losses and compared the brain activity of those who exhibited the sign effect and those who did not. When predicting future losses, significant differences were apparent between the two participant groups in terms of striatal activity representing delay length and in insular activity representing sensitivity to magnitude. Furthermore, participants with the sign effect exhibited a greater insular response to the magnitude of loss than to that of gain, and also a greater striatal response to the delay of loss than to that of gain. These findings may provide a new biological perspective for the development of novel treatments and preventive measures for social problems associated with the sign effect.

  • delay discounting
  • fMRI
  • insula
  • loss aversion
  • sign effect
  • striatum
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 34 (16)
Journal of Neuroscience
Vol. 34, Issue 16
16 Apr 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Neural Mechanisms of Gain–Loss Asymmetry in Temporal Discounting
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Neural Mechanisms of Gain–Loss Asymmetry in Temporal Discounting
Saori C. Tanaka, Katsunori Yamada, Hiroyasu Yoneda, Fumio Ohtake
Journal of Neuroscience 16 April 2014, 34 (16) 5595-5602; DOI: 10.1523/JNEUROSCI.5169-12.2014

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Neural Mechanisms of Gain–Loss Asymmetry in Temporal Discounting
Saori C. Tanaka, Katsunori Yamada, Hiroyasu Yoneda, Fumio Ohtake
Journal of Neuroscience 16 April 2014, 34 (16) 5595-5602; DOI: 10.1523/JNEUROSCI.5169-12.2014
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • delay discounting
  • fMRI
  • insula
  • loss aversion
  • sign effect
  • striatum

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Cognitive

  • Cortically-evoked movement in humans reflects history of prior executions, not plan for upcoming movement
  • Anticipation of Appetitive Operant Action Induces Sustained Dopamine Release in the Nucleus Accumbens
  • Neither Enhanced Nor Lost: The Unique Role of Attention in Children's Neural Representations
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.