Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles, Systems/Circuits

Different Neuronal Computations of Spatial Working Memory for Multiple Locations within versus across Visual Hemifields

Ayano Matsushima and Masaki Tanaka
Journal of Neuroscience 16 April 2014, 34 (16) 5621-5626; https://doi.org/10.1523/JNEUROSCI.0295-14.2014
Ayano Matsushima
Department of Physiology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Masaki Tanaka
Department of Physiology, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Spatial working memory is one of the most studied cognitive functions, serving as a model system to decipher computational principles of the brain. Although neuronal mechanisms for remembering a single location have been well elucidated, little is known about memory for multiple locations. Here, we examined the activities of prefrontal neurons during monkeys remembered positions of one or two visual cue(s). When the two cues were presented across the left and right visual fields, neurons exhibited a comparable response to the activity for the preferred cue presented alone. When the two cues were presented within the same hemifield, neurons exhibited an intermediate response between those to the individual cues. Subsequent computer simulations predicted a lower signal-to-noise ratio in the latter condition, which was further verified by behavioral experiments. Considering the separation of contralateral and ipsilateral visual processing, the lateral inhibition in local circuits might implicitly determine different neuronal computations and memory capacities for bilateral and unilateral displays.

  • memory capacity
  • prefrontal cortex
  • primate
  • single-unit recording
  • working memory
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 34 (16)
Journal of Neuroscience
Vol. 34, Issue 16
16 Apr 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Different Neuronal Computations of Spatial Working Memory for Multiple Locations within versus across Visual Hemifields
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Different Neuronal Computations of Spatial Working Memory for Multiple Locations within versus across Visual Hemifields
Ayano Matsushima, Masaki Tanaka
Journal of Neuroscience 16 April 2014, 34 (16) 5621-5626; DOI: 10.1523/JNEUROSCI.0295-14.2014

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Different Neuronal Computations of Spatial Working Memory for Multiple Locations within versus across Visual Hemifields
Ayano Matsushima, Masaki Tanaka
Journal of Neuroscience 16 April 2014, 34 (16) 5621-5626; DOI: 10.1523/JNEUROSCI.0295-14.2014
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • memory capacity
  • prefrontal cortex
  • primate
  • single-unit recording
  • working memory

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles

Systems/Circuits

  • Vocal error monitoring in the primate auditory cortex
  • Diverse Firing Profiles of Crhbp-positive Neurons in the Dorsal Pons Suggestive of Their Pleiotropic Roles in REM Sleep Regulation in Mice
  • Presynaptic Mu Opioid Receptors Suppress the Functional Connectivity of Ventral Tegmental Area Dopaminergic Neurons with Aversion-Related Brain Regions
Show more Systems/Circuits
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.