Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles, Systems/Circuits

Voltage-Sensitive Dye Imaging of Primary Motor Cortex Activity Produced by Ventral Tegmental Area Stimulation

Nobuo Kunori, Riichi Kajiwara and Ichiro Takashima
Journal of Neuroscience 25 June 2014, 34 (26) 8894-8903; https://doi.org/10.1523/JNEUROSCI.5286-13.2014
Nobuo Kunori
1Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan,
2Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Riichi Kajiwara
3Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan, and
4Department of Electronics and Bioinformatics, Meiji University, Tama, Kawasaki 214-8571, Japan
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ichiro Takashima
1Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan,
2Human Technology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ichiro Takashima
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The primary motor cortex (M1) receives dopaminergic projections from the ventral tegmental area (VTA) through the mesocortical dopamine pathway. However, few studies have focused on changes in M1 neuronal activity caused by VTA activation. To address this issue, we used voltage-sensitive dye imaging (VSD) to reveal the spatiotemporal dynamics of M1 activity induced by single-pulse stimulation of VTA in anesthetized rats. VSD imaging showed that brief electrical stimulation of unilateral VTA elicited a short-latency excitatory–inhibitory sequence of neuronal activity not only in the ipsilateral but also in the contralateral M1. The contralateral M1 response was not affected by pharmacological blockade of ipsilateral M1 activity, but it was completely abolished by corpus callosum transection. Although the VTA-evoked neuronal activity extended throughout the entire M1, we found the most prominent activity in the forelimb area of M1. The 6-OHDA-lesioned VTA failed to evoke M1 activity. Furthermore, both excitatory and inhibitory intact VTA-induced activity was entirely extinguished by blocking glutamate receptors in the target M1. When intracortical microstimulation of M1 was paired with VTA stimulation, the evoked forelimb muscle activity was facilitated or inhibited, depending on the interval between the two stimuli. These findings suggest that VTA neurons directly modulate the excitability of M1 neurons via fast glutamate signaling and, consequently, may control the last cortical stage of motor command processing.

  • electromyogram
  • intracortical microstimulation
  • mesocortical projection
  • motor learning
  • optical imaging
  • reward signaling
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 34 (26)
Journal of Neuroscience
Vol. 34, Issue 26
25 Jun 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Voltage-Sensitive Dye Imaging of Primary Motor Cortex Activity Produced by Ventral Tegmental Area Stimulation
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Voltage-Sensitive Dye Imaging of Primary Motor Cortex Activity Produced by Ventral Tegmental Area Stimulation
Nobuo Kunori, Riichi Kajiwara, Ichiro Takashima
Journal of Neuroscience 25 June 2014, 34 (26) 8894-8903; DOI: 10.1523/JNEUROSCI.5286-13.2014

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Voltage-Sensitive Dye Imaging of Primary Motor Cortex Activity Produced by Ventral Tegmental Area Stimulation
Nobuo Kunori, Riichi Kajiwara, Ichiro Takashima
Journal of Neuroscience 25 June 2014, 34 (26) 8894-8903; DOI: 10.1523/JNEUROSCI.5286-13.2014
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • electromyogram
  • intracortical microstimulation
  • mesocortical projection
  • motor learning
  • optical imaging
  • reward signaling

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles

Systems/Circuits

  • Hippocampal Sharp-Wave Ripples Decrease during Physical Actions Including Consummatory Behavior in Immobile Rodents
  • Developmental Olfactory Dysfunction and Abnormal Odor Memory in Immune-Challenged Disc1+/− Mice
  • Functional Roles of Gastrin-Releasing Peptide-Producing Neurons in the Suprachiasmatic Nucleus: Insights into Photic Entrainment and Circadian Regulation
Show more Systems/Circuits
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.