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Gait disturbance in individuals with spinal cord lesion is attributed to the interruption of descending pathways to the spinal locomotor
center, whereas neural circuits below and above the lesion maintain their functional capability. An artificial neural connection (ANC),
which bridges supraspinal centers and locomotor networks in the lumbar spinal cord beyond the lesion site, may restore the functional
impairment. To achieve an ANC that sends descending voluntary commands to the lumbar locomotor center and bypasses the thoracic
spinal cord, upper limb muscle activity was converted to magnetic stimuli delivered noninvasively over the lumbar vertebra. Healthy
participants were able to initiate and terminate walking-like behavior and to control the step cycle through an ANC controlled by
volitional upper limb muscle activity. The walking-like behavior stopped just after the ANC was disconnected from the participants even
when the participant continued to swing arms. Furthermore, additional simultaneous peripheral electrical stimulation to the foot via the
ANC enhanced this walking-like behavior. Kinematics of the induced behaviors were identical to those observed in voluntary walking.
These results demonstrate that the ANC induces volitionally controlled, walking-like behavior of the legs. This paradigm may be able to
compensate for the dysfunction of descending pathways by sending commands to the preserved locomotor center at the lumbar spinal
cord and may enable individuals with paraplegia to regain volitionally controlled walking.
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lacks volitional control because the movements are induced in
the preprogrammed manner. In most individuals with SCI, gait
disturbance is attributed to a disconnection between rostral brain
areas and the lumbar locomotor center, which is still able to

Introduction

Each year, >130,000 people worldwide suffer from spinal cord
injury (SCI), and many are forced to begin a new, wheelchair
bound life (Thuret et al., 2006). An approach to restoring walking

ability is functional electrical stimulation (FES), which applies
preprogrammed bursts of short electrical pulses to motor nerves
or muscles to generate patterned muscle contraction in the par-
alyzed limb (Peckham et al., 2001; Popovic et al., 2001; Kilgore et
al., 2008). This conventional preprogrammed FES, however,
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induce stepping-like movements (Calancie et al., 1994; Dimitri-
jevic et al., 1998; Gerasimenko et al., 2008; Harkema et al., 2011).
If neural activity above the lesion can be transferred to the loco-
motor center below the lesion, walking behavior may be induced
and controlled volitionally.

It has been shown that spinal circuits can produce functional
and rhythmic limb movements without supraspinal input
(Forssberg and Grillner, 1973; Grillner and Zangger, 1979). In-
vasive spinal stimulation can induce locomotor movement in
both animals (Saigal et al., 2004; Ichiyama et al., 2005; van den
Brand et al., 2012) and humans (Dimitrijevic et al., 1998; Gerasi-
menko et al., 2003, 2008; Minassian et al., 2004). Noninvasive
magnetic stimulation over spinal vertebra offers an alternative
method to activate the spinal circuitry (Ugawa et al., 1989; Fu-
jishiro et al., 2000; Gerasimenko et al., 2010; Matsumoto et al,,
2013). Afferent input is also a key factor in the control of loco-
motion. The fact that deafferentation reduces locomotor ability
in spinalized animals (Goldberger, 1988; Lavrov et al., 2008; Nor-
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Experimental setup of artificial neural connection. A, Experimental setup of an ANC from the shoulder muscle to the lumbar locomotor center. Arm muscle-controlled magnetic and/or

electrical stimulations are delivered over the lumbar vertebra and to the sural nerve at the foot, respectively. B, Example of arm muscle-controlled magnetic and electrical stimulations. Magnetic
stimulation (Spinal stim. on second trace) was delivered to the lumbar locomotor center, at a constant intensity, with frequency proportional to EMG amplitude (first trace) above a stimulation
threshold (green line in first trace). Electrical stimulation (Nerve stim. on third and fourth traces) was delivered to the sural nerve of the foot, with current and frequency proportional to EMG
amplitude above a stimulation threshold. C, A two-legged suspension system that was described previously (Selionov et al., 2009; Gerasimenko et al., 2010). The participant is positioned on their
left side with the right (upper) leg supported directly in the area of the shank and the left (lower) leg placed on a brace attached to a horizontal board supported by vertical ropes secured
to hooks in the ceiling. In this position, the participants were able to perform voluntary air-walking. The participants were instructed not to voluntarily intervene with the movements

induced by stimulations.

ton and Mushawar, 2010) suggests the critical importance of sen-
sory afferent inputs in the generation of locomotor pattern. Thus,
the combination of spinal and peripheral nerve stimulation may
drive the locomotor circuit more effectively.

A promising technique to compensate for the damaged path-
way is the artificial neural connection (ANC) via a closed-loop
computer interface (Jackson et al., 2006a, b; Moritz et al., 2008;
Pohlmeyer et al., 2009; Ethier et al., 2012; Nishimura et al., 2013a,
b). Studies have shown that monkeys can use cortical activity to
control FES in muscles (Moritz et al., 2008; Pohlmeyer et al.,
2009; Ethier et al., 2012) and spinal cord (Nishimura et al.,
2013a), and restore volitional control of the paretic hand.

Together, these results suggest that an ANC beyond the lesion
site using volitionally controlled stimulation of the locomotor
circuit may compensate for the interrupted motor pathway. In
the present study, we show that muscle-controlled stimulations,
using noninvasive magnetic stimulation over the lumbar vertebra
associated with electrical stimulation to the sural nerve, are able
to induce volitional walking in healthy humans. This paradigm
bypasses the interrupted pathways and reestablishes volitionally
controlled walking in individuals with damage to the descending
pathways to the lumbar locomotor center.

Materials and Methods
Participants. The experiments were performed in 10 male healthy volun-
teers (age, 2652 years; height, 158—-182 c¢m; and weight, 55-80 kg) in
accordance with the Declaration of Helsinki. All procedures were ap-
proved in advance by the ethical committees of Fukushima Medical
University, Fukushima, Japan (Approval No. 1278) and the National
Institute for Physiological Sciences, Okazaki, Japan (Approval No.
12B009). All experiments were conducted at Fukushima Medical Uni-
versity. Written informed consent was obtained from all participants.
Artificial neural connection. To achieve an ANC that sends voluntary
commands to the lumbar locomotor center and bypasses the thoracic
spinal cord, muscle activity of an arm was converted to stimulus pulses.
These pulses were used to trigger both magnetic stimuli delivered over
the lumbar vertebra and electrical stimuli to the plantar cutaneous affer-
ent nerve (Fig. 1A). The ANC was accomplished by a computer interface
designed to encode the outline of full-wave rectified and moving aver-

aged (250 ms window) surface EMG activity from a muscle, and to con-
vert the encoded EMG activity (X [a.u.]) into electrical rectangular
pulses. The amplitude and frequency of these pulses were determined by
the level of the EMG activity from input muscle. Using output channels,
participants were able to voluntarily alter the frequency of magnetic
stimulation and the frequency and intensity of the peripheral nerve stim-
ulation through the interface. If the input muscle activity (X [a.u.]) was
the above stimulus threshold (X, [a.u.], as indicated by Fig. 1B, green
line on the first trace), the frequency (f[Hz]) and current (I [mA]) were
modulated by the following equations:

fg

f=ht5 X (f= fua) (1)

where f, = frequency at X,;, [Hz], fg = gain of stimulus frequency, and
fuiax = Maximum frequency [Hz].

1
I=1Iy+ 2 X, (1= I, (2)
Xun

where I, = intensity at X, [mA], I, = gain of stimulus intensity, and
Iyax = Maximum intensity [mA].

Before each session, we measured the background noise level and the
amplitude of the input EMG activity; then X, f,, and I, were arbitrarily
set by the experimenter. X,;, was set as a value at Wthh muscle activity
could be detected without contamination of background signal noise and
stimulus artifact. The X,;, was ~7.9 times the background EMG activity at
rest, which completely excluded a trigger pulse produced by background
activity contamination (Fig. 1B). Gains of stimulus frequency (f,) and
intensity () were also set as values at which f,, and I, were obtained
at the peak amplitude of input EMG activity.

Magnetic stimulation over the lumber vertebra (spinal stimulation).
Stimulation over the lumbar vertebra was performed by a magnetic stim-
ulator with a figure-eight (double 70 mm diameter) or circular (90 mm
diameter) coil (Magstim rapid; Magstim). The center of the figure-eight
coil or the upper edge of the circular coil was placed at the intervertebral
region. Before the main experimental session, we determined the optimal
site for inducing walking-like behavior in each participant. The stimulus
intensity was kept constant in each participant, and its range was set at
30%-60% of the maximum output of the magnetic stimulator. Stimulus
frequency was modulated according to the equation shown above (Eq. 1)
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Movie 1.  Volitional control of initiation and termination of walking-like behavior. Movie clip
shows typical examples of walking-like behavior induced by shoulder muscle-controlled mag-
netic stimulation to the lumbar vertebra during volitional arm swing. The subject was asked to
initiate and terminate the arm swing to control stimulations. To document the efficacy of the
AN, it was disconnected for several seconds in the “catch” trial. Data in Figure 2 were obtained
from the subject in this movie clip.

between 1 and 20 Hz. Participants confirmed that the magnetic stimulus
over the vertebra was not painful.

Electrical stimulation of peripheral nerve (nerve stimulation). Peripheral
nerve stimulation was provided by a 1 ms rectangular electric pulse to the
sural nerve at the ankle (Bp Isolator; FHC). A pair of electrodes for sural
nerve stimulation was placed on the lateral surface of the ankle, just
posterior to the lateral malleolus. Stimulus frequency (Eq. 1) and inten-
sity (Eq. 2) were modulated according to the equations shown above. The
perceptual threshold was determined as the current at which the partic-
ipant detected sensation initially when the intensity was gradually in-
creased. In most cases, the ranges of current and frequency were
perceptual threshold X 1-2.5 mA and 1-140 Hz, respectively. The par-
ticipants confirmed that the electrical stimulus to the sural nerve was not
painful.

Experimental procedure. The experimental procedures were similar to
those described previously (Selionov et al., 2009; Gerasimenko et al.,
2010). The participants were in a semiprone position with the right side
up on a comfortable bed (Fig. 1C; Movie 1). Legs were suspended by
wires to keep the participants relaxed. This apparatus supported low-
friction motions of the legs and arms, so that the participant was able to
readily perform leg movements in a horizontal plane. The participants
were asked to keep their legs relaxed throughout the experiments and not
to intervene against the leg movements induced by the spinal stimula-
tion. Muscle activity was recorded from either a shoulder extensor mus-
cle (posterior deltoid, “Shoulder” in first trace of Fig. 1B) during arm
swing or a finger adductor muscle (first dorsal interosseous, see “Hand”
in first trace of Fig. 3Ab) during hand grip and was used to control the
ANC. First, the participants were asked to induce leg movements by the
ANC with controlled muscle activity. In the catch trial, stimulation was
not given even though the participants maintained arm swings or hand
grips (see Fig. 2, “Catch”). Next, they were instructed to modulate the
step cycle from preferred (“Normal”) to a faster cycle (“Faster”) by vol-
untarily speeding up the arm swing cycle (see Fig. 4). Three stimulation
conditions were compared: stimulation over the lumbar vertebra alone
(“Spinal”), peripheral nerve stimulation alone (“Nerve”), and simulta-
neous spinal and peripheral nerve stimulation (“Nerve + Spinal”). Fur-
thermore, to demonstrate the advantages of volitionally controlled
stimulation, continuous stimulation at a constant frequency was also
conducted (“Continuous”). The frequency of continuous stimulation
was set at f,,, ... in the ANC session. The range was between 15 and 20 Hz,
and the mean value was 16.1 = 1.8 Hz (Table 1). Both “Spinal” and
“Nerve” stimulation was administered in the “Continuous” condition.
As a control condition, we recorded EMG activities during voluntary
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air-stepping behavior without stimulation (“Voluntary”). Walking-like
behaviors under these conditions were compared among the subjects. In
3 of 10 participants, the experiment was performed in an upright posture
with a full or a partial body weight support by a walking frame of a body
weight support system (Popo; Morito; see Movie 7). This system lightens
the load of the participant’s body weight on the legs via a crane attached
to a walking frame. By using this system, participants can walk on the
ground with body weight support. The amount of body weight support
was changed gradually from full to partial (partial weight was 66 = 18%
of body weight).

Recordings. To record muscle activities, bipolar surface electrodes
(NM-512G; Nihonkoden) were placed on the muscle bellies of the rectus
femoris (hip flexor), hamstrings (hip extensor), posterior deltoid, and
first dorsal interosseous. EMG signals were amplified (X1000, MEG-
6116; NIHON KOHDEN) and bandpass filtered at 50—-3000 Hz. All sig-
nals were converted to digital data via an A/D converter system at a
sampling rate of 5 kHz for later off-line analysis (CED 1401 interface with
Spike2 software; CED).

To record limb movements, a digital video camera was placed perpen-
dicular to the floor (C905; Logicool). Frame rate and image resolution of
the camera were 30 Hz and 640 X 480 pixels, respectively. Movement
trajectories of the arms and legs were detected by reflective markers on
each of the following: acromion (shoulder), the lateral epicondyle of the
humerus (elbow), great trochanter (hip), lateral epicondyle of the femur
(knee), and lateral malleolus (ankle) (Figs. 1C and 2Ba).

Marker trajectories were digitized at 30 Hz and smoothed (moving
average with 0.1 s interval) with built-in software (Dipp-Motion XD;
DITECT).

Statistics. To quantify the ankle trajectory length during walking-like
behavior, mean ankle trajectory length was analyzed for 5 cycles of arm
swing. One-way ANOVA with repeated measures was performed to de-
termine the significant differences in trajectory length among the “Shoul-
der,” “Hand,” “Continuous,” “Catch,” and “Voluntary” conditions. Post
hoc multiple comparisons were conducted using Bonferroni correction
(see Fig. 3B).

Two-way ANOVA with repeated measures was performed to deter-
mine the statistical differences in cycles. Two independent factors were
limbs (leg step and arm swing) and speeds (“Normal” and “Faster”). To
further determine the statistical difference between “Normal” and
“Faster,” paired ¢ tests were used with post hoc analysis (see Fig. 4C).

Significant differences in trajectory length between the “Nerve,” “Spi-
nal,” and “Nerve + Spinal” conditions were also determined by one-way
ANOVA with repeated measures. Post hoc multiple comparisons were
conducted using Bonferroni correction (see Fig. 6B).

The significance of the F values was obtained after Greenhouse—Geis-
ser correction, when appropriate, and then a correction coefficient & was
determined. Statistical significance level was set at p < 0.05. All pooled
values are reported as mean = SD.

Results

Volitional control of a walking-like behavior via ANC

Figure 2A shows a typical example of a walking-like behavior via
the ANC controlled by shoulder muscle activity. The participants
were asked to relax their legs and allow them to be controlled
passively by the ANC generated from shoulder muscle activity
during volitional arm swings. While the ANC was turned on (Fig.
2A, green bars), leg movement was not induced during partici-
pant relaxed the arm because the level of shoulder EMG activity
was below the threshold for delivering stimulations (Fig.
2Aa,Ba). The initiation of arm swinging immediately induced
walking-like behavior in the legs (Fig. 2Ab,Bb). The walking-like
behavior decreased gradually and stopped after the end of the
arm swing (Fig. 2A; Movie 1). To document the efficacy of the
ANG, the stimulations were stopped briefly during the “catch
trial” for several seconds (Fig. 2A, white bar). During the catch
trial, the arm swing failed to produce a walking-like behavior (see
“catch trial” in Fig. 2Ac,Bc). Typical recordings of leg kinematics,
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Table 1. Stimulus parameters’
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—_— N Nerve stimulation

Spinal stimulation: stimulus

frequency (f[Hz]) Stimulus frequency (f[ Hz]) Stimulus intensity (/[ mA])

Range Mean = SD n Range Mean =+ SD n Range Mean = SD n
Shoulder 1.0-20.4 135%17 10 4.5-149.5 83.1+313 10 0.2-5.0 2511 6
Hand 1.0-20.1 133x21 10 4.5-156.3 86.5 = 34.8 10 0.2-5.0 2612 6
Continuous — 16.1 £ 1.8 10 — 94.0 =313 10 — 26*+13 6
Normal 0.5-213 13.2£35 10 0.5-149.2 68.8 = 34.2 9 0.2-5.0 22*12 6
Faster 0.5-222 132£35 10 0.5-149.3 66.0 == 349 9 0.2-5.0 2312 6
Nerve — — — 10.0-134.8 80.9 = 144 10 1.0-5.0 2509 6
Spinal 1.0-22.7 153 £ 22 10 — — — — — —
Nerve and spinal 1.0-222 15.0 £ 25 10 10.0-136.4 80.9 = 16.8 10 1.0-5.0 2509 6

“Ranges and means of a stimulus burst are shown. These values were calculated from 5 cycles in all participants. In one subject, nerve stimulation was not performed in normal and faster tasks. Stimulus intensity of nerve stimulation was

recorded in 6 participants.
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Figure 2.  Volitional initiation and termination of walking-like behavior via an artificial neural connection. 4, Shoulder EMG (first trace) arm (second trace) and leg (sixth and seventh traces)
kinematics and stimulations (third to fifth traces) obtained during Movie 1. Muscle-controlled magnetic (spinal stimulation on third trace) and electrical (nerve stimulation: the frequency and current
are shown on fourth and fifth trace, respectively) stimulations were delivered to the intervertebral areas of L2—L3 and the sural nerve at the ankle, respectively. Gray hatched areas correspond to time
windows for stick pictures in B. Spinal stimulation (Spinal stim. on third trace) was delivered to intervertebral areas of L2 and L3 at 60% of maximum intensity with frequency (f[Hz]) proportional
to muscle activity (X [a.u.]) above a stimulation threshold (X, [a.u.]), which is indicated by the green line on the first trace (f = 1 + 6.7X, f = 20, X;;, = 0.6 (0.03 mV)). Nerve stimulation was
delivered to the sural nerve at the ankle with frequency (Nerve stim. on fourth trace, f = 30 + 16.7X, f = 100, X,, = 0.6 (0.03 mV)) and current (/ [mA], Nerve stim. on fifth trace:/ = 2 + 1.7X,
1=9,X,, = 0.6(0.03 mV)) proportional to muscle activity above the given threshold as well. B, Stick pictures showing induced walking behavior with ANC (green bars in A) before (Ba) and during
arm swing (Bb) and without ANC (“catch trial,” white bar in A) during arm swing (Bc).



Sasada et al. @ Volitional Walking via Muscle-Controlled Stimulation J. Neurosci., August 13,2014 - 34(33):11131-11142 11135

A

a Shoulder b Hand
Shoulder EMG . . ; Hand EMG - . ‘ 3 au.
| (0.06 mV)
Spinal Stim. - - ot Spinal Stim. Sone ) Fa [ 20 Hz
0
Hipangle ~ ~_ Hpangle | 1650 <656,
E
Knee Angle _/\/-\/-\/ Knee Angle _/\/\/\ ’ 180 deg.
E
2s
Ankle Trajectories Ankle Trajectories
0.6 0.6
E E
< X
© ©
> >
0.0 T ! 0.0 1
0.0 1.2 0.0 1.2
X axis (m) X axis (m)
c Continuous d Voluntary
Shoulder EMG A ‘ A Shoulder EMG A 4 A | (006 mV)
) ] 20
Spinal Stim. Spinal Stim. [ Hz
0
HipAngle = Hip Angle NN N | 150 deg.
E
F
Knee Angle _/‘*—\—“—\_—.—_ KneeAngle _ \_"N\_ " —_- | 100 deg.
E
2s
Ankle Trajectories Ankle Trajectories
0.6 0.6
E E
2 = £ @ Superior
g ; g Posterior + Anterior
0.0 1 0.0 1 Inferior
0.0 1.2 0.0 1.2
X axis (m) X axis (m)
B Trajectory length
3 -
E | ¢ TTT= —
[0}
52
>
o
<
2
g1
-l

Figure3. Ankle trajectories induced by different controllers. A, Typical recordings of stimulation patterns, observed joint angles, and ankle trajectories. Aa, Muscle-controlled stimulations of the
shoulder muscle. Ab, Muscle-controlled stimulations of the hand muscle. A, Continuous repetitive stimulations at constant frequency (18 Hz). Ad, Voluntary air-stepping behavior without
stimulations. The spinal stimulus intensity was fixed at 50% of maximum output, and spinal stimulation was applied over the intervertebral region of Th12-L1. Stimulus parameters were as follows:
spinal stimulation (f= 1+ 13.3X,f= 18, X, = 0.3 (0.01 mV)). B, Averages and SDs of trajectory length for the different conditions (n = 10). Ankle trajectory length was analyzed for 5 cycles of
arm swing. One-way ANOVA showed significant differences between these trajectory lengths (£ 571 14.147) = 42.902, p < 0.001). Black horizontal lines indicate probabilities between the given
values obtained from post hoc multiple comparisons: solid lines indicate p << 0.001; dashed line indicates p = 0.015).
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Movie 2.  Comparison between voluntary air-stepping behavior without stimulations and
walking-like behaviors controlled by shoulder muscle. Movie clip shows a typical example of
voluntary air-stepping without stimulations and walking-like behavior induced by shoulder
muscle-controlled stimulation. The subject was asked to mimic the walking behavior without
stimulation and to swing the arm to control the stimulation. Data in Figure 34a, Ad were
obtained from the subject in this movie clip.

stimulation, and ankle trajectory in 3 step cycles induced by
shoulder muscle-controlled stimulation are presented in Figure
3Aa. The shape of the ankle trajectory in ANC-controlled
walking-like behavior was identical to that in voluntary air-
stepping (compare Fig. 3Aa with Fig. 3Ad; Movie 2). All partici-
pants were able to induce the walking-like behavior voluntarily
and control its initiation and termination via the ANC. The av-
eraged trajectory length per swing cycle was calculated from all
participants (Fig. 3B). The ankle trajectory of walking-like behav-
ior was equivalent to that of voluntary walking, whereas that in
the catch trial was markedly shorter. The optimal sites for induc-
ing a walking-like behavior were positioned at the intervertebral
levels of Th12-L1 (n = 1), L1-L2 (n = 3), or L2-L3 (n = 6).

Volitional control of walking-like behavior could also be con-
trolled by hand muscle activities, which was not involved in the
arm swing during walking (Fig. 3Ab; Movie 3). The shape of the
ankle trajectory during the walking-like behavior controlled by
hand muscle was identical to that of the voluntary air-stepping
and shoulder-controlled walking (compare Fig. 3Aa,b with Fig.
3Ad). The average trajectory length induced by hand muscle ac-
tivities was significantly longer than that during the catch trial but
shorter than the voluntary air-stepping (Fig. 3B). The trajectory
length controlled by hand muscle tended to be shorter than that
controlled by shoulder muscle, although their difference was not
statistically significant. The means and ranges of output fre-
quency and intensity during these stimulus bursts were also com-
parable between both tasks (Table 1). In contrast, continuous
stimulations through the ANC at a constant frequency failed to
induce any walking-like behavior in 8 of 10 participants (Fig. 3Ac;
Movie 4). The trajectory length induced by continuous stimula-
tion was significantly shorter than other muscle-controlled
walking-like behaviors (Fig. 3B).

Participants were able to volitionally control the step cycle via
the ANC. Figure 4 shows a typical example of shoulder muscle
EMGs, pulse waveforms of stimulations, and induced kinematics
in the arm and leg. When the arm swing cycle was increased
voluntarily from normal (Fig. 4A, left, gray bar) to faster (Fig. 44,
red bar), the step cycle also increased accordingly. However,
range of motion of lower limb was a little smaller during faster
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Movie3. Volitional control via hand muscle. Movie clip shows a typical example of walking-
like behavior induced by hand muscle-controlled stimulation. Subject was asked to grip the
hand repeatedly to control stimulations. Data in Figure 3Ab were obtained from the subject in
this movie clip.
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Movie 4.  Continuous stimulations. Movie clip shows a typical example of behavior when

continuous stimulations at a constant frequency were applied. The subject was asked to relax
the legs during arm swings and stimulations. Figure 3Ac was obtained from the subject in this
movie clip.

step cycle. In turn, slowing the arm swing cycle decreased the step
cycle (Fig. 4A, right, gray bar; Movie 5). To document interlimb
coordination with the ANC, we examined phase differences be-
tween the arm swing and leg step. Phase analysis showed that the
shoulder and hip joint angles were approximately antiphasic (Fig.
4B), and the leg step cycle and arm swing cycle were identical
regardless of cycle (Fig. 4C).

We recorded the EMG activities from several leg muscles dur-
ing walking-like behavior using hand-controlled spinal stimula-
tion. Typical recordings of stimulation, kinematics, and EMG
activities (Fig. 5A) and a stick diagram in both legs (Fig. 5B) show
alternative EMG bursts between the hip flexor and extensor mus-
cles during the ANC-controlled walking-like behavior. The EMG
bursts of the right hip flexor and the left hip extensor muscles
corresponded to each stimulus burst. The EMG bursts in the right
hip extensor and the left hip flexor muscles appeared reciprocal to
those of the right hip flexor and the left hip extensor muscles.
These coordinated EMG bursts between extensor and flexor
muscles in both legs generated a walking-like behavior, which
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Figure4.

Volitional control of the step cycle. 4, Typical example of stimulations and observed kinematics during participant controlled step cycles, with normal and faster steps shown in gray and

red bars, respectively. Stimulus parameters were as follows: spinal stimulation: f= 1+ 10X, f= 18, X,, = 0.1 (green solid line on first trace indicates 0.01 mV); nerve stimulation: f = 25 + 50X,
f=100,X,, = 0.5(green dotted line onfirst trace indicates 0.03 mV);/ = 2.2 + 4 X,/ = 8.5,X,, = 0.5. B, Averaged traces of shoulder and hip joint kinematics during normal (black trace) and faster
(red trace) steps for 5 cycles. These data were obtained during the respective times shown by the gray (normal) and red (faster) bars in A. C, Linear regression analysis between arm swing and leg
step cycles. Open and filled circles represent individual values in each participant during normal and faster cycles, respectively. Averaged values and SDs are indicated by the positions and the lengths
of cross symbols, respectively. Two-way ANOVA [speed (Normal and Faster) X limb (arm swing and leg step)] showed significant effects for speed (£, 5, = 44.515, p << 0.001). There were no
significant differences for limb (£, 4) = 1.866, p > 0.05) and cycle X limb (f,; 5, = 1.496, p > 0.05).

indicates that the ANC is able to reproduce some interlimb and
intralimb coordinated walking-like behaviors.

Additional afferent inputs

Peripheral nerve stimulation to the foot enhanced the above
walking-like behavior (Fig. 6; Movie 6). Figure 6 shows typical
recordings of joint angle and ankle trajectories of walking behav-
ior induced by three kinds of stimulation: “Nerve,” “Spinal,” and
“Nerve + Spinal.” “Nerve” stimulus induced walking-like behav-
ior in only one participant (“Nerve” in Fig. 6A, “Nerve”). Inall 10
participants, “Spinal” stimulation induced a walking-like behav-
ior (Fig. 6A, “Spinal”). The ankle trajectory was enlarged when
muscle-controlled nerve stimulation was superimposed on the
spinal stimulation (Fig. 6A, compare “Spinal” and “Nerve + Spi-
nal”). Figure 6B shows pooled data of the induced trajectory
length in the three conditions. The trajectory length in “Spinal”
and “Nerve + Spinal” was significantly longer than that in
“Nerve.” The trajectory length in “Nerve + Spinal” was signifi-
cantly longer than that in “Spinal.” The means and ranges of
output stimulus frequency (f of both spinal and nerve stimula-
tion) or intensity (I of nerve stimulation) did not differ signifi-

| Shoulder

=

Spinal Stim

Movie 5.  Volitional control of step cycle frequencies. Movie clip shows a typical example of voli-
tional control of step cycle via ANC. The subject was asked to change the step cycle from the normal to
the faster cycle by voluntarily changing the arm swing cycle. Stimulus parameters were as follows:
spinal stimulation (f =1+ 6.6 X, f= 20, X, = 0.6 (0.03 mV)) and nerve stimulation (f = 30 +
16.6X,f=100,X,, = 0.6(0.03mV);,/ = 2 + 1.6X,/=9,X,, = 0.6(0.03mV)).
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Figure5. The activity patterns in leg muscles during walking-like behavior. 4, Typical recordings of muscle activities and observed kinematics of the legs. Stimulus parameters were as follows:

spinal stimulation: f =1+ 7.7X,f = 18, X,, = 1.3 (green line indicates 0.03 mV). These traces of leg muscle activities were rectified and smoothed with a 0.1 s interval. Hip flexors and extensors
were the rectus femoris muscle and biceps femoris muscle, respectively. B, Stick diagram decompositions (33 ms interval between sticks) during walking-like behavior induced by muscle-controlled
stimulation. Each stick was composed by hip, knee, and ankle markers. Dark and undertint color of both ankle trajectories represents time periods during and between stimulus bursts, respectively.

cantly between the tasks (Table 1). Thus, additional peripheral
nerve afferent inputs enhanced the walking-like behavior.

“Walking” at upright posture

Movie 7 shows a typical example of walking-like behavior in up-
right posture via the ANC. In this condition, the participant con-
trolled the spinal stimulation (50% of maximum intensity) over
the L1-L2 intervertebral area using the hand muscle activity (f =
1 + 100X, f = 20, X,;, = 0.2). During full body weight support at
upright posture, the participant was asked to induce the behavior
through the ANC while keeping their legs relaxed. Air-stepping
behavior was induced even under gravity (Movie 7). The amount
of body weight support was gradually reduced by the experi-
menter while the participant tried to control air-stepping behav-
ior continuously. When the amount of body weight support was
reduced to 47% body weight support and the participant’s foot
touched the ground, participants could “walk” forward (Movie
7). The forward walking movement was disrupted by disconnec-
tion of the ANC stimulus (catch trial), and the participants
restarted “walking” forward when afferent inputs were recon-
nected. All participants tested were able to “walk” forward at
upright posture, as well as at a semiprone position.

Discussion

Our results provide the first demonstration of volitionally con-
trolled walking via a closed-loop computer interface. The present
stimulation paradigm induced a well-coordinated walking-like
behavior by eliciting right-left and flexor—extensor coordinated
muscle activities. Stimulation also maintained the interlimb and
intralimb coordination. Moreover, subjects controlled the initi-
ation and termination of walking, as well as the step cycles vol-
untarily. We have shown that the ANC is able to compensate for
interrupted function of the descending pathways by sending an
intentionally encoded command to the preserved locomotor cen-
ter at the lumbar spinal cord. The ANC may help restore volition-

ally controlled walking in individuals with SCI at the upper
thoracic level.

Magnetic stimulation over lumbar vertebra induces
functional locomotion

Neural circuits in the spinal cord generate functional and com-
plex limbs movements. Intraspinal electrical stimulation offers
coordinated movements and evoke synergistic muscle responses
in multiple muscles (Mushahwar and Horch, 2000a, b; Mushah-
war et al., 2000; Mussa-Ivaldi and Bizzi, 2000; Saigal et al., 2004;
Moritz et al., 2007; Nishimura et al., 2013a). Tonic stimulation
via epidural (Dimitrijevic et al., 1998; Gerasimenko et al., 2003,
2008; Minassian et al., 2004, Ichiyama et al., 2005; Harkema et al.,
2011; van den Brand et al., 2012) or intraspinal electrodes (Bar-
thélemy et al., 2006, 2007) has been reported to induce locomotor
activities. Bilateral locomotion is also induced by electrical stim-
ulation of dorsal roots (Barthélemy et al., 2007). These previous
reports suggest that the spinal neural network, including afferent
fibers, may be able to generate a locomotor activity. These stim-
ulations activate spinal circuits directly. The magnetic stimula-
tion over the lumbar vertebra, however, most probably activates
afferent fibers of the dorsal roots nonselectively through induced
eddy currents (Ugawa et al., 1989; Fujishiro et al., 2000; Matsu-
moto et al., 2013) and indirectly activates spinal circuits. Mag-
netic stimulation must be much weaker than the stimulations
reported to induce walking movements by tonic electrical stim-
ulation. This strength of magnetic stimulation may explain our
failure of locomotor induction by tonic stimulation. It remains
unclear what neuronal elements were driven by magnetic stimu-
lation on lumbar vertebra. It has documented that Ia afferent
activated by vibration of the patellar ligament induced
locomotor-like stepping (Gurfinkel et al., 1998). In addition, cu-
taneous afferent around lateral foot activated by tonic electrical
stimulation of sural nerve also induces locomotor-like stepping
(Selionov et al., 2009). Indeed, additional cutaneous afferent
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Effect of peripheral afferent input on the induced walking-like behavior. A, Typical recordings of stimulation patterns, joint angles, and ankle trajectories under three conditions

obtained from the participant in Movie 6. There were three stimulus conditions: sural nerve stimulation alone (“Nerve”), spinal stimulation alone (“Spinal”), and both stimulations together (“Nerve
-+ Spinal”). The shoulder EMG controlled stimulations in all three conditions. In this participant, spinal stimulation was applied over the intervertebral area at the L2—L3 level, and its intensity was
fixed at 60% of maximum output. Stimulus parameters were as follows: nerve stimulation (f = 25 + 50X, f= 100, X,, = 0.5;/ = 2.2 + 4X,/ = 8.5, X,, = 0.5; green dotted line on first trace
indicates 0.03 mV) and spinal stimulation (f =1+ 10X,f=18,X,, = 0.1 (green solid line onfirst trace indicates 0.01 mV). B, Averages and SDs of trajectory length (n = 10). Ankle trajectory length
was analyzed for 5 cycles of arm swing. One-way ANOVA showed significant difference between these trajectory lengths (f;, ;5 = 98.183,p << 0.001).

stimulation enhanced locomotor-like behavior in our results.
Based on these arguments, we consider it most likely that the
large-diameter muscle and cutaneous afferent nerves of the dor-
sal roots were activated by the magnetic stimulation, which drive
the lumbar locomotor center.

The optimal site to induce walking-like behavior was located
at Th12-L3 in the present study. The reason for the interindi-
vidual difference in the best site of stimulation is unclear. It may
depend on the subject’s posture, daily walking pattern, or other

factors affecting waking. Such factors may determine the best site
of stimulation.

Volitionally controlled stimulation

The development of FES to muscle has been investigated to re-
store voluntary limb function (Peckham et al., 2001; Popovic et
al., 2001). In a typical FES system, the patient uses residual prox-
imal limb movements or muscle activity to trigger prepro-
grammed patterned stimulation of paralyzed muscles for the



11140 - J. Neurosci., August 13,2014 - 34(33):11131-11142

Shoulder

Dbl
L =

| Spinal Stim

TNerve Stim

"a

1= .

Nerve Stim

Movie 6.  Cutaneous afferent input enhances walking-like behavior. Movie clip shows the
effect of cutaneous afferent input on the induced walking-like behavior. Nerve stimulus alone
(Nerve stim.), spinal stimulus alone (Spinal stim.), and both nerve and spinal stimuli (Nerve +
Spinal) were applied for controlling behavior. Stimulus parameters were as follows: spinal
stimulation (f =1 + 6.6 X, f =< 20, X,, = 0.6 (0.03 mV)) and nerve stimulation (f = 30 +
16.6X,f=100,X,, = 0.6 (0.03mV);/ = 2+ 1.6X,/ =9, X,, = 0.6 (0.03 mV)).

Movie 7. Walking in upright posture. Movie clip shows typical example of walking-like
behavior in an upright posture. Stimulation was controlled by hand muscle activity during
volitional hand grips. The subject was lifted up by a walking frame to maintain an upright
posture and asked to walk forward by controlling the stimulation with body weight support.
Stimulus parameters were as follows: spinal stimulation (f = 1 + 13.3X,f = 20, X,, = 0.3
(0.01 mV)) and nerve stimulation (f= 30 + 60X, f= 100, X,, = 0.3(0.01mV);/ =2 + 1.6 X,
1=8,X, = 03(0.01mV)).

production of one or two stereotyped movements. However, re-
storing coordinated movements of paralyzed limbs with FES
remains problematic (Popovic et al., 2001). Stimulation of pe-
ripheral nerves or muscles often evokes single joint movements.
Instead, many types of multijoint-coordinated movements, in-
cluding gait, are required in our daily life. Here, we developed an
ANC system that allows participants to control the initiation,
termination (Fig. 2), and step cycles (Fig. 4) of walking-like be-
havior volitionally. The volitionally controlled walking behavior
in our paradigm is superior to the uncontrollable walking behav-
iors of the legs induced by preprogrammed stimulation. Some
invasively recorded brain signals have been used to control sig-
nals for external devices (Wessberg et al., 2000; Serruya et al.,
2002; Carmena et al., 2003). Instead of relying on invasively re-

Sasada et al. @ Volitional Walking via Muscle-Controlled Stimulation

corded cortical signals, we used muscle activities as a surrogate of
brain activity. Volitionally controlled muscle activities are more
robust than electrical brain activities and easy to record and have
few artifacts associated. They must expand the sources of control
signals for closed brain—computer interface substantially
(Nishimura et al., 2013a).

Whereas a continuous tonic stimulation rarely induced
walking-like behavior similar to previous reports (Barthélemy et
al., 2007; Gerasimenko et al., 2010), volitionally controlled stim-
ulation elicited alternative EMG bursts in bilateral flexor and
extensor muscles, which produced a walking-like behavior in all
participants (Fig. 5). Consistently, rhythmic stimulation easily
induced locomotor activity in spinalized cat (Barthélemy et al.,
2007). During locomotion in cats, reticulospinal neurons were
modulated by the locomotor rhythm (Drew et al., 1986; Perreault
et al., 1993; Matsuyama and Drew, 2000). Such a modulated de-
scending command may reach the spinal circuit. Our volitionally
modulated stimulus pattern may be comparable with natural lo-
comotor descending inputs to the spinal locomotor circuit,
which explains our finding that the volitionally modulated stim-
ulation was able to induce a walking-like movement.

We should consider the possibility that the locomotor arm
movement contributes to the generation of locomotor leg move-
ments via interlimb neural coupling between the arm and leg.
Locomotor arm movement facilitated an induction of locomotor
leg muscle activity in intact humans (Huang and Ferris, 2004) but
did not induce leg muscle activity in complete SCI individuals
(Kawashima et al., 2008). In our results, the trajectory length
controlled by hand tended to be shorter than those controlled by
shoulder, although there was no significant difference between
both tasks (Fig. 3B). In addition, tonic magnetic stimulation with
arm swing did not induce a walking-like behavior (Movie 4).
Therefore, interlimb neural coupling may be weak or not in-
volved in our condition.

One limitation of our study is that we conducted the experi-
ments in intact participants. The participants were asked to in-
hibit the volitional control of their legs and confirmed the
disruption of walking-like behavior when the stimulation was
turned off (“catch trial” in Figs. 2 and 3B). However, our exper-
imental design cannot fully exclude some subliminal direct con-
trol of the behavior by innate descending pathways. Further study
needs to investigate whether the ANC controls the lumbar loco-
motor center in individuals with a complete SCI.

Cutaneous afferent input enhances the walking-like behavior
Cutaneous afferents have a powerful influence on spinal locomo-
tor circuits (Bouyer and Rossignol, 2003; Rossignol et al., 2006),
and electrical sural nerve cutaneous afferent stimulation modi-
fied the walking pattern (Zehr et al., 1998). We used the sural
nerve stimulation to activate the flexor reflex pathway, which
activates flexor muscles in the targetlimb and extensor muscles in
the contralateral limb. Cutaneous afferent inputs enlarge the sub-
liminal excitability of the spinal circuit in our paradigm. Indeed,
additional muscle-controlled cutaneous afferents to the foot en-
hanced a walking-like behavior (Fig. 6, “Nerve + Spinal”). Elec-
trical stimulation to the sural nerve activates only cutaneous
afferents around the lateral side of the foot. Removing a partial
cutaneous afferent around the foot did not abolish walking
(Bouyer and Rossignol, 2003; Dorofeev et al., 2008). Volitionally
controlled cutaneous afferent input around the foot alone may be
insufficient to drive the locomotor center.
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Clinical application
The fact that our paradigm could be controlled by various mus-
cles (Fig. 3) suggests that this stimulation paradigm may be ap-
plied to many individuals with several kinds of disorders or
several lesion sites. The stimulation may be controlled by EMGs
from any residual muscle. Additionally, the induced behavior
through the ANC was sufficient to allow the participant to “walk”
forward on the ground over gravity while the body weight was
partially supported (Movie 7). This ability supports the clinical
usefulness of this method. However, because the input muscle
activities were smoothed for 250 ms, some delay appears from
input to stimulation. This delay may be critical for the adjustment
of walking behavior when some external perturbations occur.
Therapeutic electrical stimulation to the peripheral or central
nervous system has been shown to promote functional recovery
after injury (Plautz et al., 2003; Popovic et al., 2004; Kasten et al.,
2013). Our paradigm may activate the locomotor center directly
or indirectly and may be used to restore gait or strengthen neu-
romuscular systems of locomotion in rehabilitation. A recent
case report has shown that preprogrammed tonic electrical stimu-
lation via chronically implantable epidural spinal cord stimulation
unit induced stepping-like EMG bursts in a patient with an SCI
(Harkema et al., 2011). Implementation of ANC with a portable
or implantable bidirectional neural interface may enable patients
to control movements volitionally and to perform various move-
ments, including free behavior. The autonomous “Neurochip”
system, which is sufficiently small for chronic implant, discrimi-
nates brain or muscle activity and delivers electrical stimulation
during free behavior (Mavoori et al., 2005; Zanos et al., 2011).
Such small-sized autonomous low-power circuits may allow sub-
jects to practice continuously with an ANC outside the labora-
tory, without requiring a large magnetic stimulator or external
devices, such as the exoskeletal robot. Furthermore, long-term
exposure to an ANC could induce reorganization of cortical and
spinal circuitry (Jackson et al.,, 2006a; Lucas and Fetz, 2013;
Nishimura et al., 2013b) and may facilitate functional recovery.
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