Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Featured ArticleArticles, Behavioral/Cognitive

Apnea-Induced Rapid Eye Movement Sleep Disruption Impairs Human Spatial Navigational Memory

Andrew W. Varga, Akifumi Kishi, Janna Mantua, Jason Lim, Viachaslau Koushyk, David P. Leibert, Ricardo S. Osorio, David M. Rapoport and Indu Ayappa
Journal of Neuroscience 29 October 2014, 34 (44) 14571-14577; DOI: https://doi.org/10.1523/JNEUROSCI.3220-14.2014
Andrew W. Varga
1New York University (NYU) Sleep Disorders Center and
3Center for Neural Science, New York University, New York, New York 10003
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Akifumi Kishi
1New York University (NYU) Sleep Disorders Center and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Janna Mantua
1New York University (NYU) Sleep Disorders Center and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Jason Lim
1New York University (NYU) Sleep Disorders Center and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Viachaslau Koushyk
1New York University (NYU) Sleep Disorders Center and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David P. Leibert
1New York University (NYU) Sleep Disorders Center and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ricardo S. Osorio
2Center for Brain Health, NYU Langone School of Medicine, NYU, New York, New York 10016, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
David M. Rapoport
1New York University (NYU) Sleep Disorders Center and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Indu Ayappa
1New York University (NYU) Sleep Disorders Center and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Hippocampal electrophysiology and behavioral evidence support a role for sleep in spatial navigational memory, but the role of particular sleep stages is less clear. Although rodent models suggest the importance of rapid eye movement (REM) sleep in spatial navigational memory, a similar role for REM sleep has never been examined in humans. We recruited subjects with severe obstructive sleep apnea (OSA) who were well treated and adherent with continuous positive airway pressure (CPAP). Restricting CPAP withdrawal to REM through real-time monitoring of the polysomnogram provides a novel way of addressing the role of REM sleep in spatial navigational memory with a physiologically relevant stimulus. Individuals spent two different nights in the laboratory, during which subjects performed timed trials before and after sleep on one of two unique 3D spatial mazes. One night of sleep was normally consolidated with use of therapeutic CPAP throughout, whereas on the other night, CPAP was reduced only in REM sleep, allowing REM OSA to recur. REM disruption via this method caused REM sleep reduction and significantly fragmented any remaining REM sleep without affecting total sleep time, sleep efficiency, or slow-wave sleep. We observed improvements in maze performance after a night of normal sleep that were significantly attenuated after a night of REM disruption without changes in psychomotor vigilance. Furthermore, the improvement in maze completion time significantly positively correlated with the mean REM run duration across both sleep conditions. In conclusion, we demonstrate a novel role for REM sleep in human memory formation and highlight a significant cognitive consequence of OSA.

  • continuous positive airway pressure (CPAP)
  • obstructive sleep apnea
  • randomized controlled trial
  • REM sleep
  • sleep fragmentation
  • spatial navigational memory
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 34 (44)
Journal of Neuroscience
Vol. 34, Issue 44
29 Oct 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Apnea-Induced Rapid Eye Movement Sleep Disruption Impairs Human Spatial Navigational Memory
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Apnea-Induced Rapid Eye Movement Sleep Disruption Impairs Human Spatial Navigational Memory
Andrew W. Varga, Akifumi Kishi, Janna Mantua, Jason Lim, Viachaslau Koushyk, David P. Leibert, Ricardo S. Osorio, David M. Rapoport, Indu Ayappa
Journal of Neuroscience 29 October 2014, 34 (44) 14571-14577; DOI: 10.1523/JNEUROSCI.3220-14.2014

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Apnea-Induced Rapid Eye Movement Sleep Disruption Impairs Human Spatial Navigational Memory
Andrew W. Varga, Akifumi Kishi, Janna Mantua, Jason Lim, Viachaslau Koushyk, David P. Leibert, Ricardo S. Osorio, David M. Rapoport, Indu Ayappa
Journal of Neuroscience 29 October 2014, 34 (44) 14571-14577; DOI: 10.1523/JNEUROSCI.3220-14.2014
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • continuous positive airway pressure (CPAP)
  • obstructive sleep apnea
  • randomized controlled trial
  • REM sleep
  • sleep fragmentation
  • spatial navigational memory

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Behavioral/Cognitive

  • Non-neural factors influencing BOLD response magnitudes within individual subjects
  • Stimulus-induced changes in 1/f-like background activity in EEG
  • Complementary roles of primate dorsal premotor and pre-supplementary motor areas to the control of motor sequences
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.