Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Brief Communications

Opposing Effects of the Anesthetic Propofol at Pentameric Ligand-Gated Ion Channels Mediated by a Common Site

Timothy Lynagh and Bodo Laube
Journal of Neuroscience 5 February 2014, 34 (6) 2155-2159; DOI: https://doi.org/10.1523/JNEUROSCI.4307-13.2014
Timothy Lynagh
Neurophysiology and Neurosensory Systems, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Bodo Laube
Neurophysiology and Neurosensory Systems, Department of Biology, Technical University of Darmstadt, 64287 Darmstadt, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Propofol is an intravenous general anesthetic that alters neuronal excitability by modulating agonist responses of pentameric ligand-gated ion channels (pLGICs). Evidence suggests that propofol enhancement of anion-selective pLGICs is mediated by a binding site between adjacent subunits, whereas propofol inhibition of cation-selective pLGICs occurs via a binding site contained within helices M1–M4 of individual subunits. We considered this idea by testing propofol modulation of homomeric human glycine receptors (GlyRs) and nematode glutamate-gated chloride channels (GluCls) recombinantly expressed in Xenopus laevis oocytes with electrophysiology. The Haemonchus contortus AVR-14B GluCl was inhibited by propofol with an IC50 value of 252 ± 48 μm, providing the first example of propofol inhibition of an anion-selective pLGIC. Remarkably, inhibition was converted to enhancement by a single I18′S substitution in the channel-forming M2 helix (EC50 = 979 ± 88 μm). When a previously identified site between adjacent subunits was disrupted by the M3 G329I substitution, both propofol inhibition and enhancement of GluCls were severely impaired (IC50 and EC50 values could not be calculated). Similarly, when the equivalent positions were examined in GlyRs, the M2 S18′I substitution significantly altered the maximum level of enhancement by propofol, and the M3 A288I substitution abolished propofol enhancement. These data are not consistent with separate binding sites for the opposing effects of propofol. Instead, these data suggest that propofol enhancement and inhibition are mediated by binding to a single site in anion-selective pLGICs, and the modulatory effect on channel gating depends on the M2 18′ residue.

View Full Text
Back to top

In this issue

The Journal of Neuroscience: 34 (6)
Journal of Neuroscience
Vol. 34, Issue 6
5 Feb 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Opposing Effects of the Anesthetic Propofol at Pentameric Ligand-Gated Ion Channels Mediated by a Common Site
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Opposing Effects of the Anesthetic Propofol at Pentameric Ligand-Gated Ion Channels Mediated by a Common Site
Timothy Lynagh, Bodo Laube
Journal of Neuroscience 5 February 2014, 34 (6) 2155-2159; DOI: 10.1523/JNEUROSCI.4307-13.2014

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Opposing Effects of the Anesthetic Propofol at Pentameric Ligand-Gated Ion Channels Mediated by a Common Site
Timothy Lynagh, Bodo Laube
Journal of Neuroscience 5 February 2014, 34 (6) 2155-2159; DOI: 10.1523/JNEUROSCI.4307-13.2014
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning
  • Pharmacologically Counteracting a Phenotypic Difference in Cerebellar GABAA Receptor Response to Alcohol Prevents Excessive Alcohol Consumption in a High Alcohol-Consuming Rodent Genotype
  • Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination
Show more Brief Communications
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.