Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Brief Communications

Auditory Nerve Perinodal Dysmyelination in Noise-Induced Hearing Loss

Thomas Tagoe, Matt Barker, Andrew Jones, Natalie Allcock and Martine Hamann
Journal of Neuroscience 12 February 2014, 34 (7) 2684-2688; DOI: https://doi.org/10.1523/JNEUROSCI.3977-13.2014
Thomas Tagoe
1Department of Cell Physiology and Pharmacology, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Matt Barker
1Department of Cell Physiology and Pharmacology, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Andrew Jones
1Department of Cell Physiology and Pharmacology, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Natalie Allcock
2Electron Microscopy Facility, University of Leicester, Leicester LE1 9HN, United Kingdom
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Martine Hamann
1Department of Cell Physiology and Pharmacology, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Exposure to loud sound (acoustic overexposure; AOE) induces hearing loss and damages cellular structures at multiple locations in the auditory pathway. Whether AOE can also induce changes in myelin sheaths of the auditory nerve (AN) is an important issue particularly because these changes can be responsible for impaired action potential propagation along the AN. Here we investigate the effects of AOE on morphological and electrophysiological features of the centrally directed part of the rat AN projecting from the cochlear spiral ganglion to brainstem cochlear nuclei. Using electron microscopy and immunocytochemistry, we show that AOE elongates the AN nodes of Ranvier and triggers notable perinodal morphological changes. Compound action potential recordings of the AN coupled to biophysical modeling demonstrated that these nodal and perinodal structural changes were associated with decreased conduction velocity and conduction block. Furthermore, AOE decreased the number of release sites in the cochlear nuclei associated with the reduced amplitudes of EPSCs evoked by AN stimulation. In conclusion, AN dysmyelination may be of fundamental importance in auditory impairment following exposure to loud sound.

  • central auditory pathway
  • deafness
  • dorsal cochlear nucleus
  • dysmyelination
  • hearing loss
  • myelin
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 34 (7)
Journal of Neuroscience
Vol. 34, Issue 7
12 Feb 2014
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Auditory Nerve Perinodal Dysmyelination in Noise-Induced Hearing Loss
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Auditory Nerve Perinodal Dysmyelination in Noise-Induced Hearing Loss
Thomas Tagoe, Matt Barker, Andrew Jones, Natalie Allcock, Martine Hamann
Journal of Neuroscience 12 February 2014, 34 (7) 2684-2688; DOI: 10.1523/JNEUROSCI.3977-13.2014

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Auditory Nerve Perinodal Dysmyelination in Noise-Induced Hearing Loss
Thomas Tagoe, Matt Barker, Andrew Jones, Natalie Allcock, Martine Hamann
Journal of Neuroscience 12 February 2014, 34 (7) 2684-2688; DOI: 10.1523/JNEUROSCI.3977-13.2014
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • central auditory pathway
  • deafness
  • dorsal cochlear nucleus
  • dysmyelination
  • hearing loss
  • myelin

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning
  • Pharmacologically Counteracting a Phenotypic Difference in Cerebellar GABAA Receptor Response to Alcohol Prevents Excessive Alcohol Consumption in a High Alcohol-Consuming Rodent Genotype
  • Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination
Show more Brief Communications
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.