Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Systems/Circuits

Excitation of Tuberoinfundibular Dopamine Neurons by Oxytocin: Crosstalk in the Control of Lactation

Virginie Briffaud, Paul Williams, Justine Courty and Christian Broberger
Journal of Neuroscience 11 March 2015, 35 (10) 4229-4237; DOI: https://doi.org/10.1523/JNEUROSCI.2633-14.2015
Virginie Briffaud
Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Virginie Briffaud
Paul Williams
Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Justine Courty
Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christian Broberger
Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Milk production in the nursing mother is induced by the hormone prolactin. Its release from the anterior pituitary is generally under tonic inhibition by neuroendocrine tuberoinfundibular dopamine (TIDA) neurons of the arcuate nucleus. Successful nursing, however, requires not only production but also ejection of breast milk. This function is supported by the hormone oxytocin. Here we explored the possibility that interaction between these functionally complementary hormones is mediated by TIDA neurons. First, whole-cell patch-clamp recordings were performed on prepubertal male rat hypothalamic slices, where TIDA neurons can be identified by a robust and rhythmic membrane potential oscillation. Oxytocin induced a switch of this rhythmic activity to tonic discharge through a depolarization involving direct actions on TIDA neurons. The depolarization is sensitive to blockade of the oxytocin receptor and is mediated by a voltage-dependent inward current. This inward current has two components: a canonical transient receptor potential-like conductance in the low-voltage range, and in the high-voltage range, a Ca2+-dependent component. Finally, whole-cell and loose-patch recordings were also performed on slices from virgin and lactating female rats to evaluate the relevance of these findings for nursing. In these preparations, oxytocin was found to excite TIDA neurons, identified by their expression of tyrosine hydroxylase. These findings suggest that oxytocin can modulate prolactin secretion by exciting TIDA neurons, and that this may serve as a feedforward inhibition of prolactin release.

  • arcuate nucleus
  • oscillation
  • prolactin
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 35 (10)
Journal of Neuroscience
Vol. 35, Issue 10
11 Mar 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Excitation of Tuberoinfundibular Dopamine Neurons by Oxytocin: Crosstalk in the Control of Lactation
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Excitation of Tuberoinfundibular Dopamine Neurons by Oxytocin: Crosstalk in the Control of Lactation
Virginie Briffaud, Paul Williams, Justine Courty, Christian Broberger
Journal of Neuroscience 11 March 2015, 35 (10) 4229-4237; DOI: 10.1523/JNEUROSCI.2633-14.2015

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Excitation of Tuberoinfundibular Dopamine Neurons by Oxytocin: Crosstalk in the Control of Lactation
Virginie Briffaud, Paul Williams, Justine Courty, Christian Broberger
Journal of Neuroscience 11 March 2015, 35 (10) 4229-4237; DOI: 10.1523/JNEUROSCI.2633-14.2015
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • arcuate nucleus
  • oscillation
  • prolactin

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Systems/Circuits

  • Basolateral amygdala astrocytes are engaged by the acquisition and expression of a contextual fear memory
  • Inference of Electrical Stimulation Sensitivity from Recorded Activity of Primate Retinal Ganglion Cells
  • Spinal Basis of Direction Control during Locomotion in Larval Zebrafish
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.