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Network Structure Shapes Spontaneous Functional
Connectivity Dynamics
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The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information
processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination
between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically
examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in
macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions
from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased.
Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC
is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic path-
ways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core
exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further

elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture.
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Introduction

The importance of ongoing fluctuations in neuronal systems to
support behavior has long been recognized (Pinneo, 1966; Rabi-
novich et al., 2012) and a growing number of studies are using
BOLD-fMRI as a method to explore these intrinsic dynamics.
Functional connectivity (FC) varies significantly across time-
scales, even in the absence of an explicit task (Hutchison et al.,
2013a). Resting-state FC (rsFC) dynamics are thought to reflect
the brain’s exploration of different network configurations.
These configurations may be attributed to the diverse set of po-
tential cognitive processes that unfold in an unconstrained man-
ner over the course of a resting-state scan (Bressler and Kelso,
2001; Deco et al., 2013). Regional differences in rsFC dynamics
exist, in which interactions involving certain regions can be more
variable over time (Honey et al., 2007; Gonzalez-Castillo et al.,
2014). Interestingly, those same regions are often described as
“hubs,” densely connected regions that are topologically posi-
tioned to serve flexible and integrative roles across different func-
tional subnetworks (van den Heuvel and Sporns, 2013a).
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Anatomical connectivity has been shown to constrain func-
tional networks constructed at coarse timescales with implica-
tions for both local and global brain communication. Locally,
functionally connected regions tend to be structurally connected
(Greicius et al., 2009; van den Heuvel et al., 2009) and the
strength of a functional connection depends in part on the den-
sity of its underlying white matter tracts (Hagmann et al., 2008;
Hermundstad et al., 2013). FC is also mediated by polysynaptic
connections, as rsFC exists between regions lacking direct struc-
tural connections (Adachi et al., 2012). More globally, structural
constraints dictate the modular organization of functional net-
works. Dense bidirectional anatomical connectivity supports
functional specialization within modules, whereas sparse unidi-
rectional patterns are associated with network segregation into
different functional modules (Shen et al., 2012). Intermodular
communication is possibly mediated by a set of hubs that are
densely structurally connected to one another, a “rich club” that
forms a strong anatomical core (van den Heuvel and Sporns,
2013b). Together, these findings suggest that the neuroanatomi-
cal architecture plays an important role in shaping the “static”
organization of intrinsic functional networks.

Theoretical studies have suggested that rsFC dynamics emerge
from a fixed anatomical architecture via differences in intrinsic dy-
namics of the individual node (Deco et al., 2011; Hansen et al., 2015).
In these models, anatomical connectivity is best reflected by rsFC at
coarse timescales and is only weakly correlated with rsFC at finer
timescales (Honey et al., 2007). The observation that hubs are func-
tionally variable (Honey et al., 2007; Misi¢ et al., 2011), especially
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with each other (Allen et al., 2014), seems contradictory to the
evidence that hubs are densely structurally interconnected. Presum-
ably, these connections should mostly limit the functional interac-
tions of hubs to other hubs. In this study, we examined the extent to
which network structure may constrain the moment-to-moment
fluctuations in rsFC at both the local and global level. Specifically, we
tested the hypotheses that local anatomical connectivity confers sta-
bility to functional connections and that the brain’s structural topol-
ogy constrains the variability of functional connections.

Materials and Methods

Animal preparation, data acquisition, image preprocessing, and the anatom-
ical dataset have been described previously in detail (Hutchison et al., 2011;
Bezgin et al., 2012; Shen et al., 2012) and are briefly outlined below.

Macaque fMRI. fMRI data were obtained from 6 (4 female) adult
macaque monkeys (Macaca fascicularis, 3.6-5.3 kg, age 5.10 * 0.48
years). All surgical and experimental protocols were approved by the
Animal Use Subcommittee of the University of Western Ontario Council
on Animal Care and were in accordance with the Canadian Council on
Animal Care guidelines.

Animals were anesthetized before their scanning session and anesthe-
sia was maintained using 1% isoflurane (0.78 minimum alveolar concen-
tration) (Tinker et al., 1977) in oxygen during image acquisition.
Isoflurane is a commonly used anesthetic in resting-state investigations
of nonhuman primates, revealing robust and homologous FC patterns
(Vincent et al., 2007; Shmuel and Leopold, 2008; Teichert et al., 2010;
Hutchison et al., 2011; Mars et al., 2011; for review, see Hutchison and
Everling, 2012) while eliminating training requirements, physiological
stress, and motion. At higher dosages, isoflurane has cooccurring effects
on cerebral blood flow (CBF), blood volume, and metabolic rate that can
result in neurovascular decoupling— confounding observations of neu-
ral changes (Masamoto and Kanno, 2012). However, the level used in the
present study has been shown to preserve CBF autoregulation (Eger,
1984; Li et al., 2013) and result in slow continuous EEG activity and not
burst suppression, a pattern characteristic of isoflurane at higher dosages
(Vincent et al., 2007). Dose-dependent analysis has shown stable spatial
and temporal FC patterns at doses <1.50%, suggesting a preservation of
intrinsic functional organization (Hutchison et al., 2014).

Images were acquired using a 7 T Varian scanner and a Siemens AC84
gradient subsystem with an in-house designed and manufactured five-
channel primate head RF coil. For each monkey, two runs of 300 contin-
uous echoplanar imaging (EPI) functional volumes were acquired (TR =
2000 ms, TE = 16 ms, flip angle = 70°, slices = 30, matrix 72 X 72,
FOV = 96 mm, voxel size = 1.3 X 1.3 X 1.5 mm). The duration of each
scan was 10 min. High-resolution T,-weighted anatomical images were
also acquired for each monkey (TR = 5000 ms, TE = 38.6 ms, echo train
length = 5, effective echo = 3, slices = 30, matrix 256 X 250, FOV = 96
mm, voxel size = 375 um X 384 um X 1.5 mm).

Functional image preprocessing was performed using the FMRIB Soft-
ware Library (FSL; http://www.fmrib.ox.ac.uk) and included motion
correction, spatial smoothing (FWHM = 3 mm), high-pass temporal
filtering (Gaussian-weighted least-squares straight line fitting, o =
1005s), low-pass temporal filtering (Gaussian filter, HWHM = 2.8 s), and
brain extraction for normalization to the F99 atlas template (Van Essen,
2004; http://sumsdb.wustl.edu/sums/macaquemore.do). Nuisance vari-
ables were removed by regression using the Analysis of Functional Neu-
rolmages (AFNI) software package (http://afninimh.nih.gov/afni).
These included six motion parameters, as well as the global white matter
and CSF signals. Regression of the global mean signal was not performed.

Anatomical dataset. The anatomical dataset was derived from the
CoCoMac database (Stephan et al, 2001; Bakker et al, 2012;
http://cocomac.g-node.org) and specified as connectivity between 82
cortical regions of interest (ROIs; 41 per hemisphere) based on the Re-
gional Map parcellation of Kotter and Wanke (2005). The binary struc-
tural connectivity matrix therefore indicated the presence or absence of
interareal axonal projections previously reported in tract tracing studies
in macaques. We treated connections for which there was no information
in CoCoMac the same as connections for which there was an explicit

Shen et al. o Structural Constraints on Functional Dynamics

statement of absence of connectivity. For intrahemispheric connectivity,
only a small proportion of connections were unknown (L: 192/1406,
13.7%; R: 202/1406, 14.4%). For interhemispheric connectivity, a greater
proportion of connections were unknown (882/1406, 62.7% for each
interhemispheric direction). Limiting data analyses to only explicitly
present/absent connections produced qualitatively similar results.

The structural connectivity matrix has been described previously in
detail (Bezgin et al., 2012). Briefly, the intrahemispheric connectivity
matrix densities were 0.74 and 0.73 for right and left hemispheres, respec-
tively. The high density of our structural matrix is likely due to the coarse-
ness of the RM parcellation. Finer parcellations of anatomical
connectivity based on CoCoMac data have been reported to have signif-
icantly lower density (Modha and Singh, 2010). The proportion of uni-
directional intrahemispheric connections was 0.16 and 0.14 for the right
and left hemispheres, respectively. These values match well with a recent
rigorous histological description of macaque intrahemispheric connec-
tivity (Markov et al., 2014). Our parcellation provides whole cortical
coverage including interhemispheric connections.

The Regional Map parcellation was drawn on the F99 macaque stan-
dard cortical surface template (Van Essen et al., 2001) and transformed to
voxel space with a 2 mm extrusion using the Caret software package
(http://www.nitrc.org/projects/caret/; Bezgin et al., 2012).

Data analysis. ROIs for the fMRI data were defined using the Regional
Map parcellation in F99 voxel space. tSNR maps were visualized to en-
sure BOLD signal quality was consistent across the cortex. Six ROIs in the
ventral temporal region (three per hemisphere) were not included in the
analyses for this study because EPI coverage did not extend to these
regions in two animals. These were the bilateral amygdala, bilateral infe-
rior temporal cortex, and bilateral temporal polar cortex. The structural
connectivity matrix was adjusted accordingly and a total of 76 ROIs were
included in the analyses (Fig. 1A, Table 1). For each fMRI scan, a
weighted average time series was calculated for each ROI using a proba-
bilistic weighting scheme.

“Static” rsFC for each scan was derived using regionwise Pearson cor-
relations on whole time series (600 s or 300 volumes; Fig. 1B, top).
“Dynamic” rsFC was measured using a sliding window approach: Re-
gionwise Pearson correlations were performed on truncated time series
of 30 s (15 volumes), 44 s (22 volumes), 60 s (30 volumes), 120 s (60
volumes), and 240 s (120 volumes; Fig. 1B, bottom). The window was
advanced in increments of one time point along the entire time series and
the correlation recalculated. Window sizes were selected based on previ-
ous studies of rsFC dynamics (Hutchison et al., 2013b; Allen et al., 2014).
Each FC matrix was corrected for multiple comparisons using a false
discovery rate (FDR) procedure (Benjamini et al., 2006) with the FDR set
to p < 0.05. If regionwise correlation p-values did not reach the FDR
criterion, those elements of the FC matrix were set to zero.

To describe the correspondence between structural connectivity and
the FC networks derived from both the static and dynamic conditions, we
computed their cosine similarity by first reshaping each FC matrix and
the structural connectivity matrix into vectors (Shen et al., 2012). Akin to
a correlation, similarity can range from —1 to 1. Values approaching 1
indicate that the vectors are highly alike, or correlated, and those ap-
proaching —1 indicate vectors that are nearly opposite. A value near 0
indicates that the vectors are independent of one another. Cosine simi-
larity was also computed between the FC networks and 1000 anatomical
null models. These null models were generated using the Brain Connec-
tivity Toolbox (BCT; http://www.brain-connectivity-toolbox.net) by
randomly rewiring the anatomical network while preserving its degree
distribution (BCT function “randmio_dir”).

Temporal stability for each connection was calculated by first cross-
correlating each FC time series with itself to produce a normalized autocor-
relation coefficient function. The autocorrelation coefficient function was
therefore equal to 1.0 at a time lag of zero and ranged from —1.0 to 1.0 at all
other time lags. To compare autocorrelation coefficient functions across
structural categories, autocorrelation coefficient functions were categorized
according to the underlying anatomical connectivity (bidirectional, unidi-
rectional, or no direct connectivity). The mean autocorrelation function was
then computed for connections within each structural category. Statistical
significance was determined using a bootstrap procedure (Efron and Tibshi-
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Figure 1.

30s

Connectivity matrices of macaque cortex. 4, Structural connectivity matrix derived from the CoCoMac database. Connections are shown in white. B, Example of a “static” functional

connectivity matrix (top) constructed from an entire resting-state BOLD-fMRI scan lasting 600 s from one animal. Examples of “dynamic” functional connectivity matrices constructed using different
window sizes from the same scan (bottom). Functional connectivity was computed as Pearson correlations of ROI time series. Matrices are organized generally from anterior to posterior regions, for
left then right hemispheres. Labels and ordering of regions within each hemisphere are specified in Table 1. €, Cosine similarity between rsFCand structural connectivity increases with increasing
FCwindow size. Similarity was computed between the structural connectivity matrix and each rsFC matrix at each time point for all window sizes and averaged (== SEM) across time points for each
window size. For comparison with previous studies, performing this analysis using Pearson correlations resulted in a similar increase in correspondence between the structural and functional
networks as window size increased (rrange: 0.081—0.226; Kruskal-Wallis, p << 0.001). Gray circles represent the average = SEM of cosine similarity between windowed FC networks and 1000 null

models with fixed degree distributions.

rani, 1993) to estimate 95% confidence intervals for the mean autocorrela-
tion coefficient functions. We additionally computed a single measure of
temporal stability for each functional connection by averaging its autocor-
relation function across all lags. To ensure that the FC time series were sta-
tionary and that temporal stability could be inferred from their
autocorrelation coefficient functions, we performed augmented Dickey—
Fuller tests for unit roots (Said and Dickey, 1984) on the FC time series to
determine whether they were nonstationary. For FC time series constructed
with 30 s windows, nearly all (99.9%) were not found to have unit roots and
were therefore considered stationary. The proportion of stationary FC time
series decreased somewhat as window size increased (44 s: 98.6%; 60 s:
87.5%; 120 s: 39.8%; 240 s: 22.8%). Of note, the proportion of stationary FC
time series did not differ across structural categories for time series con-
structed using 30, 60, 120, and 240 s window sizes (1-way ANOVA tests, all
p > 0.235). For the 44 s window size, there were slightly fewer (p < 0.01)
stationary FC time series for the bidirectional structural category (97.7%)
compared with the unidirectional (99.1%) and no direct connectivity
(99.4%) categories.

Distances between ROIs were computed using the direct Euclidean
distance between their centroids. A rich club organization of the ma-
caque anatomical network was identified using the BCT (for details, see
Harriger et al., 2012). This involved calculating the rich club coefficient
(BCT function: “rich_club_bd”) over the range of node degrees in the
structural network. Coefficients were then normalized by dividing them
by the average coefficient determined from 10,000 randomized networks
with preserved degree distributions (BCT function: “makerandCIJde-
greesfixed”). Statistical significance was determined by computing a one-
sided p-value using the null distribution of coefficients from the 10,000

randomized networks. An FDR procedure (p < 0.05) was then applied to
correct for multiple comparisons.

Additional graph measures were computed to describe each node’s func-
tional embeddedness and the temporal variability of that embeddedness
using the BCT. To determine overall functional embeddedness, we com-
puted two measures of centrality (degree and betweenness) using the static
rsFC networks. The degree of each node was calculated by taking the sum of
its connection weights (BCT function “strengths_und”). The normalized
betweenness of each node was calculated by taking the proportion of all
shortest paths in the network that pass through that node (BCT function
“betweenness_wei”). The variability of functional centrality was also deter-
mined by computing degree and betweenness for nodes in the dynamic rsFC
networks and then calculating their SD over time for each node. However,
interpreting variability measured by SD across a large range of centrality
values is confounded by the fact that large magnitudes of centrality may
naturally be associated with large SD. To account for the differences in func-
tional centrality across nodes, we also computed the coefficient of variation
(CV = SD/mean) to obtain a normalized measure of dispersion. Degree,
betweenness, SD, and CV were all averaged across scans to obtain a single
measure for each region in each window size.

Results

Correspondence between anatomical connectivity and
dynamic rsFC

We derived dynamic resting-state cortical FC in macaques by
performing regionwise correlations of BOLD time series for each
scan across different window sizes using a sliding window ap-



5582 - J. Neurosci., April 8, 2015 - 35(14):5579-5588

Table 1. Cortical ROIs and their abbreviations

Abbreviation ROI

PFCpol Prefrontal polar cortex

PFCm Medial prefrontal cortex

PFCol Orbitolateral prefrontal cortex
PFCom Orbitomedial prefrontal cortex
PFCoi Orbitoinferior prefrontal cortex
PFCd Dorsolateral prefrontal cortex
PFCdm Dorsomedial prefrontal cortex
PFCdl Centrolateral prefrontal cortex
PFCv Ventrolateral prefrontal cortex
(Ga Anterior cingulate cortex

s Subgenual cingulate cortex
p Posterior cingulate cortex

CCr Retrosplenial cingulate cortex
FEF Frontal eye field

PMCvl Ventrolateral premotor cortex
PMCdI Dorsolateral premotor cortex
PMCm Medial premotor cortex

M1 Primary motor cortex

S1 Primary somatosensory cortex
S2 Secondary somatosensory cortex
G Gustatory cortex

la Anterior insula

Ip Posterior insula

Al Primary auditory cortex

A2 Secondary auditory cortex

HC Hippocampus

PHC Parahippocampal cortex

TCc Central temporal cortex

TG Superior temporal cortex

TCv Ventral temporal cortex

PCi Inferior parietal cortex

PCip Intraparietal cortex

PCm Medial parietal cortex

PCs Superior parietal cortex

VACv Anterior visual area (ventral)
VACd Anterior visual area (dorsal)
V2 Visual area 2

V1 Visual area 1

proach. To examine the relationship between FC dynamics and
the underlying anatomical architecture, we first computed the
cosine similarity between each dynamic rsFC network and the
structural connectivity network. Figure 1C shows how the aver-
age similarity between the structural and functional networks
increased significantly with increasing FC window size (Kruskal—
Wallis, p < 0.001). These cosine similarity values were signifi-
cantly greater than those between the FC networks and
anatomical null models (Wilcoxon rank sum tests, all p < 0.001;
Fig. 1C). Cosine similarity between windowed FC and null mod-
els increased somewhat with window size (Kruskal-Wallis, p <
0.01), but the increase is substantially greater for the observed
data than for the null models (Fig. 1C, inset). Together, these
results suggest that functional networks constructed using low-
frequency dynamics best reflect the underlying anatomical struc-
ture. All proceeding data analyses will focus on dynamic rsFC
computed from a sliding window size of 60 s because it repre-
sented an intermediate window size. Results from all other win-
dow sizes were similar and are presented as indicated.

Temporal stability of rsFC is supported by local anatomical
connectivity

Consistent with previous reports (Hutchison et al., 2013b), we
observed fluctuations in rsFC on the order of seconds to minutes
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(Fig. 1B). Figure 2A shows an example of how whole-brain rsFC
patterns recapitulated over time within a single scanning session.
To determine the extent to which each connection changes over
time, we first computed a normalized autocorrelation coefficient
function for each functional connection. The autocorrelation co-
efficient function describes how statistically correlated the FC ata
single time point is with itself at all other time points in the FC
time series. We therefore used the autocorrelation coefficient as a
measure of the temporal stability of each functional connection.
Although the use of autocorrelation in an absolute sense requires
the time series be stationary, our main interest was the relative
difference of the autocorrelation across functional connections
and whether such differences were related to the underlying an-
atomical connections. We compared the autocorrelation coeffi-
cient functions for pairs of regions that were anatomically
connected to those that were not anatomically connected. Figure
2B illustrates how FC was significantly more correlated with itself
across most lags (190/271, 70.1%) for pairs of regions with recip-
rocal structural connections than for pairs that were not structur-
ally connected. Results were similar for other window sizes (Fig.
2C). The autocorrelation coefficient function for pairs with unidi-
rectional structural connectivity was not on average significantly dif-
ferent from either reciprocally connected or unconnected pairs (Fig.
2B,C), suggesting that the temporal stability for these region pairs
fell somewhere in between.

We then averaged the autocorrelation coefficient function
across all lags to generate a single temporal stability metric for
each connection. It is important to note that the strength of static
rsFC and the autocorrelation coefficient of the FC time series are
not necessarily related. For example, a functional connection that
is weak, but consistently so, would have high temporal stability.
Mean temporal stability computed using a 60 s window was very
weakly correlated with the distance between regions (Pearson
correlation, r = —0.05, p < 0.001), suggesting that the observed
rsFC dynamics were not due to spatial blurring of the BOLD
signal or other acquisition-related artifacts. Temporal stability
was strongly correlated with the magnitude of static rsFC for both
reciprocally connected (r = 0.70, p < 0.001) and structurally
unconnected pairs (r = 0.58, p < 0.001). Static rsFC, however, is
known to decrease with increasing distance between regions
(Honey et al., 2009), so we regressed distance from the static rsFC
strength to more accurately examine the relationship between
static rsFC and dynamic rsFC. The residuals of the static FC-
distance relationship were still well correlated with dynamic FC
stability (r = 0.66, p < 0.001; see Table 2 for other window sizes).

Figure 3 illustrates the most and least temporally stable dy-
namic FC for regions with and without structural connectivity. At
a 1/16 threshold, there were more highly stable connections for
structurally connected than unconnected pairs (Fig. 3A). The
most stable FC of structurally connected pairs was concentrated
between sensory (e.g., primary and secondary auditory, visual
and somatosensory cortices), motor (e.g., primary and premotor
cortices), and early association areas (e.g., visual association, pos-
terior parietal and posterior cingulate cortices) (see Fig. 3 B, C for
other thresholds). Many of the most stable functional connec-
tions between structurally connected pairs were between homol-
ogous cortical regions (Fig. 3, horizontal red lines). There were
also many structurally connected regions with highly unstable
FC. These were more widely distributed between regions of the
prefrontal cortices, between prefrontal areas and sensory areas
(e.g., between PFC and visual, auditory and somatosensory ar-
eas), as well as between prefrontal and temporal cortical areas.
Moreover, some region pairs with no direct structural connec-
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Figure 2.

Stability of time-varying rsFC. A, Whole-brain fluctuations in rsFC show repeated patterns across an example scanning session for a window size of 60 s. B, Mean (%= 95% ()

autocorrelation coefficient function across all pairs of regions with reciprocal structural connectivity (red) and pairs with no structural connectivity (gray) fora window size of 60 s. Mean function for
pairs having unidirectional structural connectivity also shown (blue dashed). ¢, Mean (== 95% Cl) autocorrelation coefficient functions for other window sizes. Lags with significant differences in
autocorrelation coefficients between reciprocal and no structural connectivity classes denoted by gray points along the top.

Table 2. Temporal stability correlations at various window sizes

Window size (s)

Temporal stability correlation with 30 44 120 240
Euclidean distance —0.06 —0.05 —0.05 —0.06
Static FC strength
Bidirectional SC 0.71 0.71 0.63  0.52
No direct SC 0.51 0.57 0.56  0.50
Residual of SC-distance regression 0.65 0.67 0.60  0.50
Number of intermediary regions
All pairs with no direct SC 0.1 0.13 014  0.12
Pairs with explicitly absent SC ~ 0.13 (p = 0.09) 0.15 (p << 0.05) 0.29 0.30

Correlation coefficients as specified, all p << 0.001 unless otherwise specified.

tions still exhibited highly stable FC. These tended to be long-
range functional connections between prefrontal areas and
sensory areas. Similar observations of the distributions of stable
and unstable FC across the human brain have recently been made
(Gonzalez-Castillo et al., 2014; Zalesky et al., 2014).

The strength of static FC between regions that have no direct
structural connectivity is known to increase with the number of
other regions that are structurally connected to both (Adachi et
al., 2012). We investigated whether these intermediary regions
also played a role in resting-state functional dynamics. For the set
of regions with no direct structural connectivity, temporal stabil-
ity increased with an increasing number of intermediary regions
that had a direct structural connection to both regions within the
unconnected pair (Fig. 4; Pearson correlation, r = 0.14, p <
0.001; Table 2). This relationship was more pronounced when
analysis was limited to only those pairs that were explicitly stated
to be unconnected in CoCoMac (r = 0.23, p < 0.01; Table 2). The
dynamic nature of functional interactions was therefore also me-
diated by polysynaptic anatomical connections.

Rich club structure confers functional stability

A recent study in humans has shown how functional connections
are more stable within modules than across modules (Zalesky et
al., 2014). Using a previously described decomposition of our
static functional network (Shen et al., 2012), we found similar
results in our macaque dataset. Functional connections within
modules had significantly greater temporal stability than connec-
tions across modules (Wilcoxon rank sum tests, p < 0.001) for all
but the largest window size (240 s, p = 0.43).

Communication across modules is thought to proceed via
functional hubs. Previous studies have suggested that hubs iden-
tified at coarse timescales are highly variable in their topological
role at finer timescales (Honey etal., 2007; Misi¢ etal., 2011; Allen
et al., 2014). To examine the extent to which the structural, to-
pography affects these differences in functional dynamics, we
first identified a structural “rich club” set of hubs. A rich club
organization in which central regions were more densely inter-
connected than what is expected by chance was detected across a
range of degrees (Fig. 5A). We examined two particular rich
clubs, the first being the smallest subset of regions (RC,,,,.;;, de-
gree =101) and the second being the subset most significantly
different from the null distribution (RC,, degree =91). RC,,y
consisted of 10 bilateral regions that included cingulate, parietal,
and prefrontal areas and RCg, also included the posterior insula,
dorsolateral premotor cortex, and additional prefrontal regions
(Fig. 5B). Functional connections were then classified according
to this structural rich club organization to determine whether any
differences exist in their temporal stability. Rich club connections
were functional connections between two structural rich club
nodes, feeder connections were those between a rich club node
and a non-rich club node, and local connections were those be-
tween two non-rich club nodes (van den Heuvel et al., 2012).
Note that all of these functional connections have underlying
structural connectivity and only differ in terms of the
structurally-determined topological role of their respective
nodes. We considered the negative weights in functional net-
works to be meaningful and therefore generated graphs by taking
the absolute value of rsFC weights. Graphs created by keeping
only positive weights, as well as by thresholding at various levels,
did not yield qualitatively different results (Table 3). For both the
RC;pnan and RC;, networks, temporal stability was significantly
different across the three connection types (Kruskal-Wallis tests,
both p < 0.001; Fig. 5C,D). Somewhat surprisingly, a post hoc
analysis revealed how rich club functional connections had sig-
nificantly greater temporal stability than the other connection
types (Tukey—Kramer method, p < 0.05), whereas the stability of
feeder and local connections were not significantly different from
one another (p > 0.05). The strength of static rsFC within and
outside of the rich club, however, did not follow this pattern,
suggesting that topological differences in rsFC dynamics were not
simply due to differences in static rsFC strength. For the RC,,.;
network, the strength of rich club and local connections were not
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no direct structural connections

Most (red solid) and least (blue dashed) temporally stable rsFC connections for pairs with reciprocal structural connectivity (left) and pairs with no direct structural connectivity (right)

for a window size of 60 s. Graphs were thresholded to the top and bottom 1/16 (A), 1/8 (B), and 1/32 (C) of the overall distribution. Structurally identified rich club nodes for the smallest RC level

(RC

small)

detected are shown in dark gray and the additional RC nodes that contribute to the most significant RC level (RC

sg) detected are shown in light gray. Only pairs with explicitly absent

connections (in at least one direction) are included. Nodes with no connections at these thresholds are not shown.

different from one another (p > 0.05) and for the RC;, network,
the strength of local connections were significantly greater than
both rich club and feeder connections (p < 0.05; Fig. 5E). These
results suggest that the functional interactions within the struc-
tural rich club occur more consistently over time than interac-
tions outside of the structural rich club. Our findings further
suggest that the brain’s structural organization confers stability to
otherwise highly flexible and dynamic functional networks.
These findings are somewhat paradoxical to previous studies
that have reported how functional connections involving hubs
are variable (Allen et al., 2014) and how functional hubs can have

variable topological roles at finer timescales (Honey et al., 2007).
To reconcile our findings with these previous studies, we first
used graph theoretical tools to identify functional hubs by com-
puting the degree and betweenness of each region in the static
rsFC condition. We then related these static centrality measures
to the variability of centrality measures computed using dynamic
rsFC (cf. Honey et al., 2007). Consistent with previous findings,
regions that were highly functionally embedded on average had
variable functional roles over time. The SD of both functional
degree and betweenness increased with increasing centrality
(Pearson correlation, r = 0.48, p < 0.001 and r = 0.43, p < 0.001,
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respectively; Fig. 6A). This effect, however, was reversed when
variability was normalized for differences in centrality across re-
gions: The normalized variability (CV) of both functional degree
and betweenness decreased with increasing centrality (r = —0.78,
p < 0.001 and r = —0.65, p < 0.001, respectively; Fig. 6B; see
Table 3 for other graph thresholds and time windows). A partic-
ular set of functional hubs were also identified being a part of the
structural rich club. These regions included the bilateral posterior
cingulate cortex, the bilateral medial parietal cortex, the right
intraparietal cortex, and the right posterior insula. This set of
structure—function hubs were also among the regions that had
the lowest degree and betweenness CVs (Fig. 6, filled colored
circles). Our results suggest that, although hub regions are highly
variable in their functional roles at finer timescales, they are not
as variable as would be expected by their high centrality.

Discussion

In this study, we examined the extent to which the brain’s ana-
tomical organization influences the fluctuations observed in
resting-state fMRI networks. We found that both local and global
rsFC dynamic properties were bounded by structural connectiv-
ity across multiple timescales. Both direct and indirect structural
connectivity was associated with greater temporal stability in
rsFC. Despite their high variability in centrality over time, hub
regions operated within a relatively small functional range. This
was likely due to constraints imposed by the structural topology,
with the greatest temporal stability occurring within the structur-
ally defined rich club core.

Simulations of dynamic resting-state networks have suggested
how the brain’s underlying structure is best reflected at the coars-
est timescales (Honey et al., 2007). We have provided an empir-
ical demonstration of this relationship by showing how similarity
between rsFC and structural connectivity increased with increas-
ing rsFC window size. This relationship existed regardless of
whether we used cosine or Pearson correlation methods to com-
pute similarity. Together, these findings suggest that structural
connectivity is expressed in rsFC networks at the lowest frequen-
cies of BOLD fluctuations. At finer timescales, rsFC networks
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explore different functional configurations that do not reflect the
entire structural network. However, even at these finer time-
scales, functional configurations are constrained by anatomical
connectivity and likely reflect subsets of the network structure.

Our data add to a growing literature on the complex nature of
the structure—function relationship (for review, see Damoiseaux
and Greicius, 2009). Even at coarse timescales, rsFC is not a per-
fect representation of the underlying structural connectivity. In
part, the disconnect between structure and function is due to the
contribution of polysynaptic interactions to rsFC (Vincent et al.,
2007; Honey et al., 2009; Adachi et al., 2012). We found that these
structural constraints also extend to the dynamic properties of
rsFC. Temporal stability increased with an increasing number of
intermediary structural connections between otherwise uncon-
nected regions. Functional changes that occur at the cellular level
may also contribute to the lack of agreement between macroscale
structure and function (Stephan et al., 2009; Friston, 2011).
Short-term synaptic plasticity, for example, plays a significant
role in shaping how information is processed within neural cir-
cuits (Abbott and Regehr, 2004). Neuromodulatory projections
from the basal forebrain and thalamus are often excluded from
macroscale studies, including ours, but have widespread effects
on networks important for cognitive functions (Hasselmo and
Sarter, 2011; Varela, 2014). The structure—function link also de-
pends on the completeness of the structural dataset used. In our
case, the binary nature of our structural connectivity matrix does
not reflect the variability of connection weights (i.e., axonal fiber
density) or distances (i.e., tract lengths) that exists across brain
regions. These structural properties are known to play a role in static
network organization (Ercsey-Ravasz et al., 2013) and may be par-
ticularly important in shaping functional dynamics. Including these
features in future studies may help to inform the observed relation-
ship between structure and function (Deco et al., 2014).

We replicated a recent finding that functional connections
within modules are more stable over time than connections
across modules (Zalesky et al., 2014) using a previously described
decomposition of our static functional network. Importantly, we
have previously shown how the modularity of that static func-
tional network is supported by dense reciprocal anatomical pro-
jections within modules and sparse unidirectional anatomical
connections across modules (Shen et al., 2012; Messé etal., 2015).
Our current findings data further suggest that functional network
dynamics are supported by the brain’s underlying anatomical
structure. We have additionally extended our understanding of
the role that structural connectivity plays in long-range commu-
nication (i.e., across modules) by examining the functional vari-
ability of hub regions. Previous studies have suggested that
measures of centrality, and functional hubs in particular, are
highly variable (Honey et al., 2007; Misi¢ et al., 2011; Tagliazucchi
etal.,2012; Allen et al., 2014; Yang et al., 2014). The variability of
hub regions has implications for flexibility in cognitive function
and behavior. For example, regional variability in functional to-
pology during training predicts the extent to which participants
can learn a motor task (Bassett et al., 2011), with the greatest
temporal variability in heteromodal association regions of the
prefrontal and temporal cortices (Bassett et al., 2013). These pre-
vious findings in both resting-state and task-based analyses indi-
cating that integrative functional regions are highly variable seem
inconsistent with the view that they are structurally connected
and that structural connectivity constrains rsFC. Moreover, we
identified a structural rich club in which rich club connections
were found to exhibit significantly greater functional temporal
stability than other kinds of connections. We reconciled these
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Table 3. Variability (SD) and normalized variability (CV) of degree and betweenness correlations with functional embeddedness across various graph thresholds and

window sizes
Threshold Window size (s)
60% 40% 20% Positive weights only 30 44 120 240
Variability (SD)
Degree 0.49 0.38 0.55 0.59 0.73 0.65 0.22 (p = 0.05) —0.15(p = 0.19)
Betweenness 0.42 0.38 0.45 0.26 (p < 0.05) 0.19 (p = 0.10) 0.46 0.58 0.61
Normalized variability (CV)
Degree —0.77 —0.83 —0.88 —0.86 —0.65 —0.73 —0.81 —0.84
Betweenness —0.65 —0.65 —0.61 —0.53 —0.60 —0.60 —0.62 —0.62

Correlation coefficients as specified, all p << 0.001 unless otherwise indicated.

seemingly paradoxical findings by first replicating previous find-
ings that high functional variability is associated with high func-
tional embedding. However, when we took into account the
differences in range within which each region could operate by
computing the CV, we found the opposite relationship: CV de-
creased with increasing functional embeddedness. In particular, a
set of structure—function hubs that included the posterior cingu-
late and medial parietal cortical areas had some of the lowest CVs.
These areas correspond with hub regions that have the greatest
functional variability as reported in previous human studies (Al-
len etal., 2014; Gonzalez-Castillo et al., 2014). These data suggest
that, although hubs are flexible in function, they explore only a
limited range of all possible configurations afforded by the avail-
able synaptic and polysynaptic pathways. In particular, rsFC dy-
namics are biased by the brain’s rich club structure (Fig. 6C).
That is, rich club nodes tend to be structurally connected to each
other and that tendency dictates how consistently they interact
with one another, as observed in the higher temporal stability of
the rsFC dynamics. Related to this, a recent study suggested how
the structural rich club might be responsible for integrative in-
formation processing across different resting-state networks (van
den Heuvel and Sporns, 2013b). We add to this understanding by
demonstrating that the structural rich club has direct conse-
quences on resting-state dynamics.

Differences in observations of hub variability between the
present study and previous ones in awake human subjects may
also be attributed to our anesthetized “resting-state” approach.
The low-dose of isoflurane used in the present study is known to
produce robust and homologous FC patterns (for review, see
Hutchison and Everling, 2012), as well as stable temporal FC
patterns that suggest the preservation of intrinsic functional or-
ganization (Hutchison et al., 2014). Nevertheless, anesthesia has
recently been shown to alter the temporal structure of resting-
state networks and, at the highest levels of sedation, functional
network dynamics are limited and instead reflect the rigid structure
of the anatomical network (Barttfeld et al., 2015). Wakefulness may
therefore be a less dynamically constrained “resting-state” and a di-
rect comparison between existing human studies with resting-state
dynamics in awake animals is needed in future studies.

Consideration of the structure—function relationship is in-
complete without an understanding of the ongoing fluctuations
in rsFC. In simulations, stationary models of rsFC based on the
underlying structural connectivity still leave a large proportion of
the variance in the structure—function relationship unexplained
(Messé et al., 2014), suggesting that network structure may play a
significant role in influencing the nonstationary properties of
functional networks. A recent study has shown how the recon-
struction of large-scale structural connectivity from rsFC is most
successful when the dynamical system is at a critical point just
before instability (Deco et al., 2014). In simulations, simply al-

lowing both high- and low-activity patterns to exist at the level of
local populations (i.e., nodes) is enough to result in the emer-
gence of realistic whole-brain FC dynamics from an otherwise
fixed structural network (Hansen et al., 2015). Together, these
simulation data suggested that the structural network allows for
maximal variability of resting-state networks while restraining
their dynamics from entering an unstable state. Our observations
that functional hubs work well within their available range and
that the densely structurally connected rich club regions were the
most temporally stable support this view. These findings show
how the brain’s structural architecture sets the constraints for the
range of functional network configurations.
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