Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles, Systems/Circuits

Role of Input Correlations in Shaping the Variability and Noise Correlations of Evoked Activity in the Neocortex

Alejandro F. Bujan, Ad Aertsen and Arvind Kumar
Journal of Neuroscience 3 June 2015, 35 (22) 8611-8625; https://doi.org/10.1523/JNEUROSCI.4536-14.2015
Alejandro F. Bujan
1Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Ad Aertsen
1Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Arvind Kumar
1Faculty of Biology, and Bernstein Center Freiburg, University of Freiburg, 79104 Freiburg, Germany, and
2Computational Biology, School of Computer Science and Communication, KTH, Royal Institute of Technology, 100 44 Stockholm, Sweden
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Arvind Kumar
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Recent analysis of evoked activity recorded across different brain regions and tasks revealed a marked decrease in noise correlations and trial-by-trial variability. Given the importance of correlations and variability for information processing within the rate coding paradigm, several mechanisms have been proposed to explain the reduction in these quantities despite an increase in firing rates. These models suggest that anatomical clusters and/or tightly balanced excitation–inhibition can generate intrinsic network dynamics that may exhibit a reduction in noise correlations and trial-by-trial variability when perturbed by an external input. Such mechanisms based on the recurrent feedback crucially ignore the contribution of feedforward input to the statistics of the evoked activity. Therefore, we investigated how statistical properties of the feedforward input shape the statistics of the evoked activity. Specifically, we focused on the effect of input correlation structure on the noise correlations and trial-by-trial variability. We show that the ability of neurons to transfer the input firing rate, correlation, and variability to the output depends on the correlations within the presynaptic pool of a neuron, and that an input with even weak within-correlations can be sufficient to reduce noise correlations and trial-by-trial variability, without requiring any specific recurrent connectivity structure. In general, depending on the ongoing activity state, feedforward input could either increase or decrease noise correlation and trial-by-trial variability. Thus, we propose that evoked activity statistics are jointly determined by the feedforward and feedback inputs.

  • attention
  • evoked activity
  • feedforward inputs
  • network dynamics
  • noise correlations
  • trial-by-trial variability
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 35 (22)
Journal of Neuroscience
Vol. 35, Issue 22
3 Jun 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Role of Input Correlations in Shaping the Variability and Noise Correlations of Evoked Activity in the Neocortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Role of Input Correlations in Shaping the Variability and Noise Correlations of Evoked Activity in the Neocortex
Alejandro F. Bujan, Ad Aertsen, Arvind Kumar
Journal of Neuroscience 3 June 2015, 35 (22) 8611-8625; DOI: 10.1523/JNEUROSCI.4536-14.2015

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Role of Input Correlations in Shaping the Variability and Noise Correlations of Evoked Activity in the Neocortex
Alejandro F. Bujan, Ad Aertsen, Arvind Kumar
Journal of Neuroscience 3 June 2015, 35 (22) 8611-8625; DOI: 10.1523/JNEUROSCI.4536-14.2015
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • attention
  • evoked activity
  • feedforward inputs
  • network dynamics
  • noise correlations
  • trial-by-trial variability

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles

Systems/Circuits

  • Gestational Chlorpyrifos Exposure Imparts Lasting Alterations to the Rat Somatosensory Cortex
  • The Neurobiology of Cognitive Fatigue and Its Influence on Effort-Based Choice
  • Transcranial focused ultrasound modulates feedforward and feedback cortico-thalamo-cortical pathways by selectively activating excitatory neurons
Show more Systems/Circuits
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.