Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Brief Communications

Bridging Cytoarchitectonics and Connectomics in Human Cerebral Cortex

Martijn P. van den Heuvel, Lianne H. Scholtens, Lisa Feldman Barrett, Claus C. Hilgetag and Marcel A. de Reus
Journal of Neuroscience 14 October 2015, 35 (41) 13943-13948; DOI: https://doi.org/10.1523/JNEUROSCI.2630-15.2015
Martijn P. van den Heuvel
1Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lianne H. Scholtens
1Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lisa Feldman Barrett
2Department of Psychology, Northeastern University, Boston, Massachusetts 02115,
3Department of Psychiatry and Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02129, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Claus C. Hilgetag
4Department of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marcel A. de Reus
1Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, 3508 GA Utrecht, The Netherlands,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The rich variation in cytoarchitectonics of the human cortex is well known to play an important role in the differentiation of cortical information processing, with functional multimodal areas noted to display more branched, more spinous, and an overall more complex cytoarchitecture. In parallel, connectome studies have suggested that also the macroscale wiring profile of brain areas may have an important contribution in shaping neural processes; for example, multimodal areas have been noted to display an elaborate macroscale connectivity profile. However, how these two scales of brain connectivity are related—and perhaps interact—remains poorly understood. In this communication, we combined data from the detailed mappings of early twentieth century cytoarchitectonic pioneers Von Economo and Koskinas (1925) on the microscale cellular structure of the human cortex with data on macroscale connectome wiring as derived from high-resolution diffusion imaging data from the Human Connectome Project. In a cross-scale examination, we show evidence of a significant association between cytoarchitectonic features of human cortical organization—in particular the size of layer 3 neurons—and whole-brain corticocortical connectivity. Our findings suggest that aspects of microscale cytoarchitectonics and macroscale connectomics are related.

SIGNIFICANCE STATEMENT One of the most widely known and perhaps most fundamental properties of the human cortex is its rich variation in cytoarchitectonics. At the same time, neuroimaging studies have also revealed cortical areas to vary in their level of macroscale connectivity. Here, we provide evidence that aspects of local cytoarchitecture are associated with aspects of global macroscale connectivity, providing insight into the question of how the scales of micro-organization and macro-organization of the human cortex are related.

  • connectivity
  • connectomics
  • cytoarchitectonics
  • diffusion MRI
  • MRI
  • pyramidal neuron
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 35 (41)
Journal of Neuroscience
Vol. 35, Issue 41
14 Oct 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Bridging Cytoarchitectonics and Connectomics in Human Cerebral Cortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Bridging Cytoarchitectonics and Connectomics in Human Cerebral Cortex
Martijn P. van den Heuvel, Lianne H. Scholtens, Lisa Feldman Barrett, Claus C. Hilgetag, Marcel A. de Reus
Journal of Neuroscience 14 October 2015, 35 (41) 13943-13948; DOI: 10.1523/JNEUROSCI.2630-15.2015

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Bridging Cytoarchitectonics and Connectomics in Human Cerebral Cortex
Martijn P. van den Heuvel, Lianne H. Scholtens, Lisa Feldman Barrett, Claus C. Hilgetag, Marcel A. de Reus
Journal of Neuroscience 14 October 2015, 35 (41) 13943-13948; DOI: 10.1523/JNEUROSCI.2630-15.2015
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Notes
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • connectivity
  • Connectomics
  • cytoarchitectonics
  • diffusion MRI
  • MRI
  • pyramidal neuron

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning
  • Pharmacologically Counteracting a Phenotypic Difference in Cerebellar GABAA Receptor Response to Alcohol Prevents Excessive Alcohol Consumption in a High Alcohol-Consuming Rodent Genotype
  • Neuromuscular NMDA Receptors Modulate Developmental Synapse Elimination
Show more Brief Communications
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.