Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles, Development/Plasticity/Repair

Retinoic Acid Receptor β Controls Development of Striatonigral Projection Neurons through FGF-Dependent and Meis1-Dependent Mechanisms

Monika Rataj-Baniowska, Anna Niewiadomska-Cimicka, Marie Paschaki, Monika Szyszka-Niagolov, Laura Carramolino, Miguel Torres, Pascal Dollé and Wojciech Krężel
Journal of Neuroscience 28 October 2015, 35 (43) 14467-14475; DOI: https://doi.org/10.1523/JNEUROSCI.1278-15.2015
Monika Rataj-Baniowska
1Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire,
2Institut de la Santé et de la Recherche Médicale, U964,
3Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104,
4Fédération de Médecine Translationnelle de Strasbourg, and
5Université de Strasbourg, 67404 Illkirch, France, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Anna Niewiadomska-Cimicka
1Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire,
2Institut de la Santé et de la Recherche Médicale, U964,
3Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104,
4Fédération de Médecine Translationnelle de Strasbourg, and
5Université de Strasbourg, 67404 Illkirch, France, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Marie Paschaki
1Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire,
2Institut de la Santé et de la Recherche Médicale, U964,
3Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104,
4Fédération de Médecine Translationnelle de Strasbourg, and
5Université de Strasbourg, 67404 Illkirch, France, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marie Paschaki
Monika Szyszka-Niagolov
1Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire,
2Institut de la Santé et de la Recherche Médicale, U964,
3Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104,
4Fédération de Médecine Translationnelle de Strasbourg, and
5Université de Strasbourg, 67404 Illkirch, France, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Laura Carramolino
6Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Laura Carramolino
Miguel Torres
6Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid 28029, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Pascal Dollé
1Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire,
2Institut de la Santé et de la Recherche Médicale, U964,
3Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104,
4Fédération de Médecine Translationnelle de Strasbourg, and
5Université de Strasbourg, 67404 Illkirch, France, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Wojciech Krężel
1Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire,
2Institut de la Santé et de la Recherche Médicale, U964,
3Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104,
4Fédération de Médecine Translationnelle de Strasbourg, and
5Université de Strasbourg, 67404 Illkirch, France, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Wojciech Krężel
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

This article has a correction. Please see:

  • Correction: Rataj-Baniowska et al., Retinoic Acid Receptor β Controls Development of Striatonigral Projection Neurons through FGF-Dependent and Meis1-Dependent Mechanisms - January 20, 2016

Abstract

The mammalian striatum controls sensorimotor and psychoaffective functions through coordinated activities of its two striatonigral and striatopallidal output pathways. Here we show that retinoic acid receptor β (RARβ) controls development of a subpopulation of GABAergic, Gad65-positive striatonigral projection neurons. In Rarb−/− knock-out mice, concomitant reduction of Gad65, dopamine receptor D1 (Drd1), and substance P expression at different phases of prenatal development was associated with reduced number of Drd1-positive cells at birth, in contrast to normal numbers of striatopallidal projection neurons expressing dopamine receptor D2. Fate mapping using BrdU pulse-chase experiments revealed that such deficits may originate from compromised proliferation of late-born striosomal neurons and lead to decreased number of Drd1-positive cells retaining BrdU in postnatal day (P) 0 Rarb−/− striatum. Reduced expression of Fgf3 in the subventricular zone of the lateral ganglionic eminence (LGE) at embryonic day 13.5 may underlie such deficits by inducing premature differentiation of neuronal progenitors, as illustrated by reduced expression of the proneural gene Ascl1 (Mash1) and increased expression of Meis1, a marker of postmitotic LGE neurons. In agreement with a critical role of FGF3 in this control, reduced number of Ascl1-expressing neural progenitors, and a concomitant increase of Meis1-expressing cells, were observed in primary cell cultures of Rarb−/− LGE. This defect was normalized by addition of fibroblast growth factor (FGF). Such data point to role of Meis1 in striatal development, also supported by reduced neuronal differentiation in the LGE of Meis1−/− embryos. Our data unveil a novel mechanism of development of striatonigral projection neurons involving retinoic acid and FGF, two signals required for positioning the boundaries of Meis1-expressing cells.

SIGNIFICANCE STATEMENT We provide the first evidence that retinoic acid signaling controls development of striatonigral projection neurons, which constitute one of the two major output pathways of the striatum. Our data point to retinoic acid receptor β (RARβ) as novel determinant of striatonigral pathway development, and indicate that such activities of RARβ are mediated by abnormal FGF3 and Meis1 signaling, but do not involve Isl1, Ctip2, or Ebf1, the only factors known so far to control development of these neurons. Furthermore, present data support possibility that lateral ganglionic eminence development is controlled by gradients of fibroblast growth factor and RA signaling.

  • dopamine receptors
  • FGF
  • MEIS1
  • neurogenesis
  • retinoic acid receptors
  • striatum
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 35 (43)
Journal of Neuroscience
Vol. 35, Issue 43
28 Oct 2015
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Retinoic Acid Receptor β Controls Development of Striatonigral Projection Neurons through FGF-Dependent and Meis1-Dependent Mechanisms
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Retinoic Acid Receptor β Controls Development of Striatonigral Projection Neurons through FGF-Dependent and Meis1-Dependent Mechanisms
Monika Rataj-Baniowska, Anna Niewiadomska-Cimicka, Marie Paschaki, Monika Szyszka-Niagolov, Laura Carramolino, Miguel Torres, Pascal Dollé, Wojciech Krężel
Journal of Neuroscience 28 October 2015, 35 (43) 14467-14475; DOI: 10.1523/JNEUROSCI.1278-15.2015

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Retinoic Acid Receptor β Controls Development of Striatonigral Projection Neurons through FGF-Dependent and Meis1-Dependent Mechanisms
Monika Rataj-Baniowska, Anna Niewiadomska-Cimicka, Marie Paschaki, Monika Szyszka-Niagolov, Laura Carramolino, Miguel Torres, Pascal Dollé, Wojciech Krężel
Journal of Neuroscience 28 October 2015, 35 (43) 14467-14475; DOI: 10.1523/JNEUROSCI.1278-15.2015
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • dopamine receptors
  • FGF
  • MEIS1
  • neurogenesis
  • retinoic acid receptors
  • striatum

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Development/Plasticity/Repair

  • Adenosine and Astrocytes Determine the Developmental Dynamics of Spike Timing-Dependent Plasticity in the Somatosensory Cortex
  • Functional cooperation of α-synuclein and tau is essential for proper corticogenesis
  • SECISBP2L-Mediated Selenoprotein Synthesis Is Essential for Autonomous Regulation of Oligodendrocyte Differentiation
Show more Development/Plasticity/Repair
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.