Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Cover ArticleArticles, Cellular/Molecular

Glial Cell Calcium Signaling Mediates Capillary Regulation of Blood Flow in the Retina

Kyle R. Biesecker, Anja I. Srienc, Angela M. Shimoda, Amit Agarwal, Dwight E. Bergles, Paulo Kofuji and Eric A. Newman
Journal of Neuroscience 7 September 2016, 36 (36) 9435-9445; DOI: https://doi.org/10.1523/JNEUROSCI.1782-16.2016
Kyle R. Biesecker
1Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kyle R. Biesecker
Anja I. Srienc
1Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anja I. Srienc
Angela M. Shimoda
1Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Amit Agarwal
2Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Amit Agarwal
Dwight E. Bergles
2Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dwight E. Bergles
Paulo Kofuji
1Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Eric A. Newman
1Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Eric A. Newman
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The brain is critically dependent on the regulation of blood flow to nourish active neurons. One widely held hypothesis of blood flow regulation holds that active neurons stimulate Ca2+ increases in glial cells, triggering glial release of vasodilating agents. This hypothesis has been challenged, as arteriole dilation can occur in the absence of glial Ca2+ signaling. We address this controversy by imaging glial Ca2+ signaling and vessel dilation in the mouse retina. We find that sensory stimulation results in Ca2+ increases in the glial endfeet contacting capillaries, but not arterioles, and that capillary dilations often follow spontaneous Ca2+ signaling. In IP3R2−/− mice, where glial Ca2+ signaling is reduced, light-evoked capillary, but not arteriole, dilation is abolished. The results show that, independent of arterioles, capillaries actively dilate and regulate blood flow. Furthermore, the results demonstrate that glial Ca2+ signaling regulates capillary but not arteriole blood flow.

SIGNIFICANCE STATEMENT We show that a Ca2+-dependent glial cell signaling mechanism is responsible for regulating capillary but not arteriole diameter. This finding resolves a long-standing controversy regarding the role of glial cells in regulating blood flow, demonstrating that glial Ca2+ signaling is both necessary and sufficient to dilate capillaries. While the relative contributions of capillaries and arterioles to blood flow regulation remain unclear, elucidating the mechanisms that regulate capillary blood flow may ultimately lead to the development of therapies for treating diseases where blood flow regulation is disrupted, including Alzheimer's disease, stroke, and diabetic retinopathy. This finding may also aid in revealing the underlying neuronal activity that generates BOLD fMRI signals.

  • blood flow
  • calcium signaling
  • capillary
  • glia
  • neurovascular coupling
  • retina
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 36 (36)
Journal of Neuroscience
Vol. 36, Issue 36
7 Sep 2016
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Glial Cell Calcium Signaling Mediates Capillary Regulation of Blood Flow in the Retina
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Glial Cell Calcium Signaling Mediates Capillary Regulation of Blood Flow in the Retina
Kyle R. Biesecker, Anja I. Srienc, Angela M. Shimoda, Amit Agarwal, Dwight E. Bergles, Paulo Kofuji, Eric A. Newman
Journal of Neuroscience 7 September 2016, 36 (36) 9435-9445; DOI: 10.1523/JNEUROSCI.1782-16.2016

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Glial Cell Calcium Signaling Mediates Capillary Regulation of Blood Flow in the Retina
Kyle R. Biesecker, Anja I. Srienc, Angela M. Shimoda, Amit Agarwal, Dwight E. Bergles, Paulo Kofuji, Eric A. Newman
Journal of Neuroscience 7 September 2016, 36 (36) 9435-9445; DOI: 10.1523/JNEUROSCI.1782-16.2016
Reddit logo Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • blood flow
  • calcium signaling
  • capillary
  • glia
  • neurovascular coupling
  • retina

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Articles

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles

Cellular/Molecular

  • Coupling between the Stereocilia of Rat Sensory Inner-Hair-Cell Hair Bundles Is Weak, Shaping Their Sensitivity to Stimulation
  • Mechanisms of Dominant Electrophysiological Features of Four Subtypes of Layer 1 Interneurons
  • Activity-dependent Nr4a2 induction modulates synaptic expression of AMPA receptors and plasticity via a Ca2+/CRTC1/CREB pathway
Show more Cellular/Molecular
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.