Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

Modified Origins of Cortical Projections to the Superior Colliculus in the Deaf: Dispersion of Auditory Efferents

Blake E. Butler, Julia K. Sunstrum and Stephen G. Lomber
Journal of Neuroscience 18 April 2018, 38 (16) 4048-4058; DOI: https://doi.org/10.1523/JNEUROSCI.2858-17.2018
Blake E. Butler
1Department of Psychology,
2Brain and Mind Institute,
3National Centre for Audiology,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Blake E. Butler
Julia K. Sunstrum
4Psychology Undergraduate Program, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Julia K. Sunstrum
Stephen G. Lomber
1Department of Psychology,
2Brain and Mind Institute,
3National Centre for Audiology,
5Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A5C1, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Stephen G. Lomber
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Following the loss of a sensory modality, such as deafness or blindness, crossmodal plasticity is commonly identified in regions of the cerebrum that normally process the deprived modality. It has been hypothesized that significant changes in the patterns of cortical afferent and efferent projections may underlie these functional crossmodal changes. However, studies of thalamocortical and corticocortical connections have refuted this hypothesis, instead revealing a profound resilience of cortical afferent projections following deafness and blindness. This report is the first study of cortical outputs following sensory deprivation, characterizing cortical projections to the superior colliculus in mature cats (N = 5, 3 female) with perinatal-onset deafness. The superior colliculus was exposed to a retrograde pathway tracer, and subsequently labeled cells throughout the cerebrum were identified and quantified. Overall, the percentage of cortical projections arising from auditory cortex was substantially increased, not decreased, in early-deaf cats compared with intact animals. Furthermore, the distribution of labeled cortical neurons was no longer localized to a particular cortical subregion of auditory cortex but dispersed across auditory cortical regions. Collectively, these results demonstrate that, although patterns of cortical afferents are stable following perinatal deafness, the patterns of cortical efferents to the superior colliculus are highly mutable.

SIGNIFICANCE STATEMENT When a sense is lost, the remaining senses are functionally enhanced through compensatory crossmodal plasticity. In deafness, brain regions that normally process sound contribute to enhanced visual and somatosensory perception. We demonstrate that hearing loss alters connectivity between sensory cortex and the superior colliculus, a midbrain region that integrates sensory representations to guide orientation behavior. Contrasting expectation, the proportion of projections from auditory cortex increased in deaf animals compared with normal hearing, with a broad distribution across auditory fields. This is the first description of changes in cortical efferents following sensory loss and provides support for models predicting an inability to form a coherent, multisensory percept of the environment following periods of abnormal development.

  • auditory cortex
  • deafness
  • efferent
  • multisensory
  • plasticity
  • superior colliculus
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 38 (16)
Journal of Neuroscience
Vol. 38, Issue 16
18 Apr 2018
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Modified Origins of Cortical Projections to the Superior Colliculus in the Deaf: Dispersion of Auditory Efferents
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Modified Origins of Cortical Projections to the Superior Colliculus in the Deaf: Dispersion of Auditory Efferents
Blake E. Butler, Julia K. Sunstrum, Stephen G. Lomber
Journal of Neuroscience 18 April 2018, 38 (16) 4048-4058; DOI: 10.1523/JNEUROSCI.2858-17.2018

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Modified Origins of Cortical Projections to the Superior Colliculus in the Deaf: Dispersion of Auditory Efferents
Blake E. Butler, Julia K. Sunstrum, Stephen G. Lomber
Journal of Neuroscience 18 April 2018, 38 (16) 4048-4058; DOI: 10.1523/JNEUROSCI.2858-17.2018
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • auditory cortex
  • deafness
  • efferent
  • multisensory
  • plasticity
  • superior colliculus

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Cortically-evoked movement in humans reflects history of prior executions, not plan for upcoming movement
  • Neuronally-derived soluble Abeta evokes cell-wide astrocytic calcium dysregulation in absence of amyloid plaques in vivo
  • Effect of aging and a dual orexin receptor antagonist on sleep architecture and NREM oscillations including a REM Behavior Disorder phenotype in the PS19 mouse model of tauopathy
Show more Research Articles

Systems/Circuits

  • Cortically-evoked movement in humans reflects history of prior executions, not plan for upcoming movement
  • Neuronally-derived soluble Abeta evokes cell-wide astrocytic calcium dysregulation in absence of amyloid plaques in vivo
  • Effect of aging and a dual orexin receptor antagonist on sleep architecture and NREM oscillations including a REM Behavior Disorder phenotype in the PS19 mouse model of tauopathy
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.