Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Systems/Circuits

A Hierarchy of Time Scales for Discriminating and Classifying the Temporal Shape of Sound in Three Auditory Cortical Fields

Ahmad F. Osman, Christopher M. Lee, Monty A. Escabí and Heather L. Read
Journal of Neuroscience 1 August 2018, 38 (31) 6967-6982; DOI: https://doi.org/10.1523/JNEUROSCI.2871-17.2018
Ahmad F. Osman
1Departments of Biomedical Engineering,
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Christopher M. Lee
2Psychology, Behavioral Neuroscience, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Monty A. Escabí
2Psychology, Behavioral Neuroscience, and
3Electrical and Computer Engineering, University of Connecticut, Storrs, Connecticut, 06268
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Heather L. Read
1Departments of Biomedical Engineering,
2Psychology, Behavioral Neuroscience, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Heather L. Read
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Auditory cortex is essential for mammals, including rodents, to detect temporal “shape” cues in the sound envelope but it remains unclear how different cortical fields may contribute to this ability (Lomber and Malhotra, 2008; Threlkeld et al., 2008). Previously, we found that precise spiking patterns provide a potential neural code for temporal shape cues in the sound envelope in the primary auditory (A1), and ventral auditory field (VAF) and caudal suprarhinal auditory field (cSRAF) of the rat (Lee et al., 2016). Here, we extend these findings and characterize the time course of the temporally precise output of auditory cortical neurons in male rats. A pairwise sound discrimination index and a Naive Bayesian classifier are used to determine how these spiking patterns could provide brain signals for behavioral discrimination and classification of sounds. We find response durations and optimal time constants for discriminating sound envelope shape increase in rank order with: A1 < VAF < cSRAF. Accordingly, sustained spiking is more prominent and results in more robust sound discrimination in non-primary cortex versus A1. Spike-timing patterns classify 10 different sound envelope shape sequences and there is a twofold increase in maximal performance when pooling output across the neuron population indicating a robust distributed neural code in all three cortical fields. Together, these results support the idea that temporally precise spiking patterns from primary and non-primary auditory cortical fields provide the necessary signals for animals to discriminate and classify a large range of temporal shapes in the sound envelope.

SIGNIFICANCE STATEMENT Functional hierarchies in the visual cortices support the concept that classification of visual objects requires successive cortical stages of processing including a progressive increase in classical receptive field size. The present study is significant as it supports the idea that a similar progression exists in auditory cortices in the time domain. We demonstrate for the first time that three cortices provide temporal spiking patterns for robust temporal envelope shape discrimination but only the ventral non-primary cortices do so on long time scales. This study raises the possibility that primary and non-primary cortices provide unique temporal spiking patterns and time scales for perception of sound envelope shape.

  • audio
  • loudness
  • neural coding
  • perception
  • spike precision
  • timbre
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 38 (31)
Journal of Neuroscience
Vol. 38, Issue 31
1 Aug 2018
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
A Hierarchy of Time Scales for Discriminating and Classifying the Temporal Shape of Sound in Three Auditory Cortical Fields
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
A Hierarchy of Time Scales for Discriminating and Classifying the Temporal Shape of Sound in Three Auditory Cortical Fields
Ahmad F. Osman, Christopher M. Lee, Monty A. Escabí, Heather L. Read
Journal of Neuroscience 1 August 2018, 38 (31) 6967-6982; DOI: 10.1523/JNEUROSCI.2871-17.2018

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
A Hierarchy of Time Scales for Discriminating and Classifying the Temporal Shape of Sound in Three Auditory Cortical Fields
Ahmad F. Osman, Christopher M. Lee, Monty A. Escabí, Heather L. Read
Journal of Neuroscience 1 August 2018, 38 (31) 6967-6982; DOI: 10.1523/JNEUROSCI.2871-17.2018
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • audio
  • loudness
  • neural coding
  • perception
  • spike precision
  • timbre

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Contextual expectations shape cortical reinstatement of sensory representations
  • Role of Voltage-Gated K+ Channels and K2P Channels in Intrinsic Electrophysiological Properties and Saltatory Conduction at Nodes of Ranvier of Rat Lumbar Spinal Ventral Nerves
  • A Computational Probe into the Behavioral and Neural Markers of Atypical Facial Emotion Processing in Autism
Show more Research Articles

Systems/Circuits

  • Learned Motor Patterns Are Replayed in Human Motor Cortex during Sleep
  • Whole-Brain Wiring Diagram of Oxytocin System in Adult Mice
  • Cortical motion perception emerges from dimensionality reduction with evolved spike-timing dependent plasticity rules
Show more Systems/Circuits
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.