Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Research Articles, Behavioral/Cognitive

Alpha Oscillations Modulate Preparatory Activity in Marmoset Area 8Ad

Kevin Johnston, Liya Ma, Lauren Schaeffer and Stefan Everling
Journal of Neuroscience 6 March 2019, 39 (10) 1855-1866; DOI: https://doi.org/10.1523/JNEUROSCI.2703-18.2019
Kevin Johnston
1Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario N6A 3K7, Canada, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kevin Johnston
Liya Ma
1Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario N6A 3K7, Canada, and
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Lauren Schaeffer
2Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Stefan Everling
1Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario N6A 3K7, Canada, and
2Robarts Research Institute, The University of Western Ontario, London, Ontario N6A 5B7, Canada
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Stefan Everling
  • Article
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Cognitive control often requires suppression of prepotent stimulus-driven responses in favor of less potent alternatives. Suppression of prepotent saccades has been shown to require proactive inhibition in the frontoparietal saccade network. Electrophysiological evidence in macaque monkeys has revealed neural correlates of such inhibition in this network; however, the interlaminar instantiation of inhibitory processes remains poorly understood because these areas lie deep within sulci in macaques, rendering them inaccessible to laminar recordings. Here, we addressed this gap by exploiting the mostly lissencephalic cortex of the common marmoset (Callithrix jacchus). We inserted linear electrode arrays into areas 8Ad—the putative marmoset frontal eye field—and the lateral intraparietal area of two male marmosets and recorded neural activity during performance of a task comprised of alternating blocks of trials requiring a saccade either toward a large, high-luminance stimulus or the inhibition of this prepotent response in favor of a saccade toward a small, low-luminance stimulus. We observed prominent task-dependent activity in both alpha/gamma bands of the LFP and discharge rates of single neurons in area 8Ad during a prestimulus task epoch in which the animals had been instructed which of these two tasks to perform but before peripheral stimulus onset. These data are consistent with a model in which rhythmic alpha-band activity in deeper layers inhibits spiking in upper layers to support proactive inhibitory saccade control.

SIGNIFICANCE STATEMENT Failures to inhibit automatic saccadic responses are a hallmark of many neuropsychiatric disorders, but how this process is implemented across the cortical layers in the frontoparietal saccade network remains unknown because many of the areas are inaccessible to laminar recordings in macaques. Here, we investigated laminar neural activity in marmoset monkeys, which have a smooth cortex. Monkeys were required either to generate or inhibit a prepotent saccade response. In area 8Ad, the putative frontal eye field in marmosets, rhythmic alpha-band activity (9–14 Hz) was higher in deeper layers and spiking activity was lower in upper layers when the animals were instructed to suppress a saccade toward a peripheral stimulus. Reduced alpha power during task preparation may be the underlying common neural basis of a saccade suppression deficit.

  • eye movement
  • frontal cortex
  • marmoset
  • parietal cortex
  • saccade
View Full Text
Back to top

In this issue

The Journal of Neuroscience: 39 (10)
Journal of Neuroscience
Vol. 39, Issue 10
6 Mar 2019
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Alpha Oscillations Modulate Preparatory Activity in Marmoset Area 8Ad
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
View Full Page PDF
Citation Tools
Alpha Oscillations Modulate Preparatory Activity in Marmoset Area 8Ad
Kevin Johnston, Liya Ma, Lauren Schaeffer, Stefan Everling
Journal of Neuroscience 6 March 2019, 39 (10) 1855-1866; DOI: 10.1523/JNEUROSCI.2703-18.2019

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Alpha Oscillations Modulate Preparatory Activity in Marmoset Area 8Ad
Kevin Johnston, Liya Ma, Lauren Schaeffer, Stefan Everling
Journal of Neuroscience 6 March 2019, 39 (10) 1855-1866; DOI: 10.1523/JNEUROSCI.2703-18.2019
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
    • Abstract
    • Introduction
    • Materials and Methods
    • Results
    • Discussion
    • Footnotes
    • References
  • Figures & Data
  • Info & Metrics
  • eLetters
  • PDF

Keywords

  • eye movement
  • frontal cortex
  • marmoset
  • parietal cortex
  • saccade

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

Research Articles

  • Transfer of Tactile Learning from Trained to Untrained Body Parts Supported by Cortical Coactivation in Primary Somatosensory Cortex
  • Adenosine and Astrocytes Determine the Developmental Dynamics of Spike Timing-Dependent Plasticity in the Somatosensory Cortex
  • Ras Inhibitor Lonafarnib Rescues Structural and Functional Impairments of Synapses of Aβ1-42 Mice via α7nAChR-Dependent BDNF Upregulation
Show more Research Articles

Behavioral/Cognitive

  • Transfer of Tactile Learning from Trained to Untrained Body Parts Supported by Cortical Coactivation in Primary Somatosensory Cortex
  • Ras Inhibitor Lonafarnib Rescues Structural and Functional Impairments of Synapses of Aβ1-42 Mice via α7nAChR-Dependent BDNF Upregulation
  • Pallidal Activity Related to Posture and Movement during Reaching in the Cat
Show more Behavioral/Cognitive
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2022 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.