Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

About the Cover

October 02, 2019; Volume 39,Issue 40

Cover image

Cover image expansion

This image shows the two major cone bipolar cell types of primate retina synapsing with the terminal (pedicle) of a short-wavelength-sensitive (S) cone photoreceptor. The pedicle's axon descends from the top of the figure (in partial transparency) and its base contains 17 synaptic ribbons (red) marking the sites of glutamate release. S cones are distinguished by their contacts with “blue-cone” bipolar cells (shades of blue-violet) whose dendrites form large endings close to the synaptic ribbons and are depolarized by light onset. An “OFF midget” bipolar cell (yellow) forms contacts at the base of the pedicle and is excited by light offset. These S OFF-midget bipolar cells initiate a unique private-line pathway from S cones to midget ganglion cells specialized for color coding. Yeon Jin Kim and Ursula Bertram helped with image preparation. For more information see the article by Wool et al. (pages 7893–7909).

Back to top
PreviousNext

In this Issue

The Journal of Neuroscience: 39 (40)
Journal of Neuroscience
Vol. 39, Issue 40
2 Oct 2019
  • Table of Contents
  • Table of Contents (PDF)
  • About the Cover
  • Index by author
  • Advertising (PDF)
  • Ed Board (PDF)
Sign up for alerts

Jump to

  • This Week in The Journal
  • Journal Club
  • Research Articles
    • Cellular/Molecular
    • Development/Plasticity/Repair
    • Systems/Circuits
    • Behavioral/Cognitive
    • Neurobiology of Disease
  • Erratum
  • Most Cited
  • Most Read
  • eLetters
Loading
  • An RNA-Sequencing Transcriptome and Splicing Database of Glia, Neurons, and Vascular Cells of the Cerebral Cortex
  • The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception
  • Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control
  • A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function
  • The analysis of visual motion: a comparison of neuronal and psychophysical performance
More...
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.