Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE

User menu

  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Anatomy and physiology of a color system in the primate visual cortex

MS Livingstone and DH Hubel
Journal of Neuroscience 1 January 1984, 4 (1) 309-356; DOI: https://doi.org/10.1523/JNEUROSCI.04-01-00309.1984
MS Livingstone
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DH Hubel
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

Staining for the mitochondrial enzyme cytochrome oxidase reveals an array of dense regions (blobs) in the primate primary visual cortex. They are most obvious in the upper layers, 2 and 3, but can also be seen in layers 4B, 5, and 6, in register with the blobs in layers 2 and 3. We compared cells inside and outside blobs in macaque and squirrel monkeys, looking at their physiological responses and anatomical connections. Cells within blobs did not show orientation selectivity, whereas cells between blobs were highly orientation selective. Receptive fields of blob cells had circular symmetry and were of three main types, Broad-Band Center-Surround, Red-Green Double-Opponent, and Yellow-Blue Double-Opponent. Double-Opponent cells responded poorly or not at all to white light in any form, or to diffuse light at any wavelength. In contrast to blob cells, none of the cells recorded in layer 4C beta were Double-Opponent: like the majority of cells in the parvocellular geniculate layers, they were either Broad-Band or Color- Opponent Center-Surround, e.g., red-on-center green-off-surround. To our surprise cells in layer 4C alpha were orientation selective. In tangential penetrations throughout layers 2 and 3, optium orientation, when plotted against electrode position, formed long, regular, usually linear sequences, which were interrupted but not perturbed by the blobs. Staining area 18 for cytochrome oxidase reveals a series of alternating wide and narrow dense stripes, separated by paler interstripes. After small injections of horseradish peroxidase into area 18, we saw a precise set of connections from the blobs in area 17 to thin stripes in area 18, and from the interblob regions in area 17 to interstripes in area 18. Specific reciprocal connections also ran from thin stripes to blobs and from interstripes to interblobs. We have not yet determined the area 17 connections to thick stripes in area 18. In addition, within area 18 there are stripe-to-stripe and interstripe- to-interstripe intrinsic connections. These results suggest that a system involved in the processing of color information, especially color-spatial interactions, runs parallel to and separate from the orientation-specific system. Color, encoded in three coordinates by the major blob cell types, red-green, yellow-blue, and black-white, can be transformed into the three coordinates, red, green, and blue, of the Retinex algorithm of Land.

Back to top

In this issue

The Journal of Neuroscience: 4 (1)
Journal of Neuroscience
Vol. 4, Issue 1
1 Jan 1984
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Anatomy and physiology of a color system in the primate visual cortex
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Anatomy and physiology of a color system in the primate visual cortex
MS Livingstone, DH Hubel
Journal of Neuroscience 1 January 1984, 4 (1) 309-356; DOI: 10.1523/JNEUROSCI.04-01-00309.1984

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Anatomy and physiology of a color system in the primate visual cortex
MS Livingstone, DH Hubel
Journal of Neuroscience 1 January 1984, 4 (1) 309-356; DOI: 10.1523/JNEUROSCI.04-01-00309.1984
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
(JNeurosci logo)
(SfN logo)

Copyright © 2023 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.