Skip to main content

Umbrella menu

  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
  • SfN.org
  • eNeuro
  • The Journal of Neuroscience
  • Neuronline
  • BrainFacts.org

User menu

  • Log in
  • Subscribe
  • My alerts

Search

  • Advanced search
Journal of Neuroscience
  • Log in
  • Subscribe
  • My alerts
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
  • ALERTS
  • FOR AUTHORS
    • Preparing a Manuscript
    • Submission Guidelines
    • Fees
    • Journal Club
    • eLetters
    • Submit
  • EDITORIAL BOARD
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
  • SUBSCRIBE
PreviousNext
Articles

Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin- immunoreactive material

P Somogyi, AJ Hodgson, AD Smith, MG Nunzi, A Gorio and JY Wu
Journal of Neuroscience 1 October 1984, 4 (10) 2590-2603; DOI: https://doi.org/10.1523/JNEUROSCI.04-10-02590.1984
P Somogyi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AJ Hodgson
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AD Smith
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
MG Nunzi
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A Gorio
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JY Wu
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

The coexistence of gamma-aminobutyric acid (GABA), glutamate decarboxylase (GAD), and cholecystokinin (CCK)- or somatostatin- immunoreactive material in the same neurons was studied in the hippocampus and visual cortex of the cat. One-micrometer-thick serial sections of the same neuron were reacted to reveal different antigens by the unlabeled antibody enzyme method. All CCK- and somatostatin- immunoreactive neurons in the cortex and all CCK-immunoreactive and the majority of somatostatin-immunoreactive neurons in the hippocampus that could be examined in serial sections were also immunoreactive for GABA. In neurons that were immunoreactive for GAD it was often possible to demonstrate immunoreactivity for one of the peptides as well as for GABA. GABA-immunoreactive neurons, as revealed by an antiserum to GABA, were present in all layers of the cortex and hippocampus, and their shape, size, and distribution were similar to GAD-immunoreactive neurons. All GAD-immunoreactive neurons were also positive for GABA, but the latter staining revealed additional neurons. CCK/GABA- and somatostatin/GABA-immunoreactive neurons were present mainly in layers II and upper III and in layers V and VI in the visual cortex. CCK/GABA- immunoreactive neurons were most frequently present in the strata oriens, pyramidale, and moleculare of the hippocampus and in the polymorph cell layer of the dentate gyrus. Somatostatin/GABA- immunoreactive neurons were localized mainly in the stratum oriens and in the hilus of the fascia dentata. The two peptides could not be found in the same neuron. The majority of neurons that were GABA immunoreactive did not stain for either peptide. The presence of CCK- and somatostatin-immunoreactive material in GABAergic cortical neurons raises the possibility that neuroactive peptides affect GABAergic neurotransmission.

Back to top

In this issue

The Journal of Neuroscience: 4 (10)
Journal of Neuroscience
Vol. 4, Issue 10
1 Oct 1984
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin- immunoreactive material
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Article Alerts
Sign In to Email Alerts with your Email Address
Citation Tools
Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin- immunoreactive material
P Somogyi, AJ Hodgson, AD Smith, MG Nunzi, A Gorio, JY Wu
Journal of Neuroscience 1 October 1984, 4 (10) 2590-2603; DOI: 10.1523/JNEUROSCI.04-10-02590.1984

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin- immunoreactive material
P Somogyi, AJ Hodgson, AD Smith, MG Nunzi, A Gorio, JY Wu
Journal of Neuroscience 1 October 1984, 4 (10) 2590-2603; DOI: 10.1523/JNEUROSCI.04-10-02590.1984
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Choice Behavior Guided by Learned, But Not Innate, Taste Aversion Recruits the Orbitofrontal Cortex
  • Maturation of Spontaneous Firing Properties after Hearing Onset in Rat Auditory Nerve Fibers: Spontaneous Rates, Refractoriness, and Interfiber Correlations
  • Insulin Treatment Prevents Neuroinflammation and Neuronal Injury with Restored Neurobehavioral Function in Models of HIV/AIDS Neurodegeneration
Show more Articles
  • Home
  • Alerts
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Policy
  • Contact
  • Feedback
(JNeurosci logo)
(SfN logo)

Copyright © 2021 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.