Skip to main content

Main menu

  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE

User menu

  • Log out
  • Log in
  • My Cart

Search

  • Advanced search
Journal of Neuroscience
  • Log out
  • Log in
  • My Cart
Journal of Neuroscience

Advanced Search

Submit a Manuscript
  • HOME
  • CONTENT
    • Early Release
    • Featured
    • Current Issue
    • Issue Archive
    • Collections
    • Podcast
  • ALERTS
  • FOR AUTHORS
    • Information for Authors
    • Fees
    • Journal Clubs
    • eLetters
    • Submit
    • Special Collections
  • EDITORIAL BOARD
    • Editorial Board
    • ECR Advisory Board
    • Journal Staff
  • ABOUT
    • Overview
    • Advertise
    • For the Media
    • Rights and Permissions
    • Privacy Policy
    • Feedback
    • Accessibility
  • SUBSCRIBE
PreviousNext
Articles

Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin

CA Ross, DA Ruggiero, DH Park, TH Joh, AF Sved, J Fernandez-Pardal, JM Saavedra and DJ Reis
Journal of Neuroscience 1 February 1984, 4 (2) 474-494; https://doi.org/10.1523/JNEUROSCI.04-02-00474.1984
CA Ross
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DA Ruggiero
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DH Park
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
TH Joh
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
AF Sved
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
J Fernandez-Pardal
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
JM Saavedra
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
DJ Reis
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Article
  • Info & Metrics
  • eLetters
  • PDF
Loading

Abstract

We have studied the responses to electrical and chemical stimulation of the ventrolateral medulla in the chloralose-anesthetized, paralyzed, artificially ventilated rat. Locations of most active pressor responses were compared to regions containing neurons labeled immunocytochemically for phenylethanolamine N-methyltransferase (PNMT), the enzyme catalyzing the synthesis of adrenaline. Elevations of arterial pressure (+81.6 +/- 2.5 mm Hg) and cardioacceleration (+73 +/- 13.6 bpm) were elicited with low current (5 times threshold of 9.5 +/- 1.1 microA) electrical stimulation in a region of rostral ventrolateral medullary reticular formation we have termed the nucleus reticularis rostroventrolateralis (RVL). Electrical stimulation of the RVL increased plasma catecholamines (16.8-fold for adrenaline, 5.3-fold for noradrenaline, and 1.9-fold for dopamine) and vasopressin (1.7-fold before spinal transection, 4.7-fold after). The location of the most active pressor region in the ventrolateral medulla corresponded closely with the location of C1 adrenaline-synthesizing (PNMT-containing) neurons. In addition, the location of the most active pressor region in the dorsomedial medulla corresponded with the location of a bundle of PNMT-containing axons. Unilateral injections into the RVL of the excitatory amino acid monosodium L-glutamate (50 pmol to 10 nmol), but not saline, caused transient dose-dependent and topographically specific elevations (maximum +71.6 +/- 4.9 mm Hg) of arterial blood pressure and tachycardia. Injections of the rigid structural analogue of glutamate, kainic acid, caused large, prolonged (at least 15 min) pressor responses and tachycardia. Unilateral injections of the inhibitory amino acid gamma-aminobutyric acid (GABA) into the RVL caused transient dose-dependent hypotension (maximum -40.8 +/- 6.6 mm Hg) and bradycardia, whereas the specific GABA antagonist bicuculline caused prolonged (10 to 20 min) elevations (+64.2 +/- 6.8 mm Hg) of arterial pressure and tachycardia. By contrast, injections of the glycine antagonist strychnine had no significant effect. Bilateral injections of the neurotoxin, tetrodotoxin, dropped arterial pressure to low levels (51.7 +/- 4.7) not changed by subsequent spinal cord transection at the first cervical segment (52.5 +/- 6.2). We propose the following. (1) Neurons within the RVL, most probably C1 adrenaline- synthesizing neurons, exert an excitatory influence on sympathetic vasomotor fibers, the adrenal medulla, and the posterior pituitary. (2) These neurons are tonically active and under tonic inhibitory control, in part via GABAergic mechanisms--perhaps via the nucleus of the solitary tract (NTS).(ABSTRACT TRUNCATED AT 400 WORDS)

Back to top

In this issue

The Journal of Neuroscience: 4 (2)
Journal of Neuroscience
Vol. 4, Issue 2
1 Feb 1984
  • Table of Contents
  • Table of Contents (PDF)
  • Index by author
Email

Thank you for sharing this Journal of Neuroscience article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin
(Your Name) has forwarded a page to you from Journal of Neuroscience
(Your Name) thought you would be interested in this article in Journal of Neuroscience.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
View Full Page PDF
Citation Tools
Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin
CA Ross, DA Ruggiero, DH Park, TH Joh, AF Sved, J Fernandez-Pardal, JM Saavedra, DJ Reis
Journal of Neuroscience 1 February 1984, 4 (2) 474-494; DOI: 10.1523/JNEUROSCI.04-02-00474.1984

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Respond to this article
Request Permissions
Share
Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin
CA Ross, DA Ruggiero, DH Park, TH Joh, AF Sved, J Fernandez-Pardal, JM Saavedra, DJ Reis
Journal of Neuroscience 1 February 1984, 4 (2) 474-494; DOI: 10.1523/JNEUROSCI.04-02-00474.1984
Twitter logo Facebook logo Mendeley logo
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Jump to section

  • Article
  • Info & Metrics
  • eLetters
  • PDF

Responses to this article

Respond to this article

Jump to comment:

No eLetters have been published for this article.

Related Articles

Cited By...

More in this TOC Section

  • Memory Retrieval Has a Dynamic Influence on the Maintenance Mechanisms That Are Sensitive to ζ-Inhibitory Peptide (ZIP)
  • Neurophysiological Evidence for a Cortical Contribution to the Wakefulness-Related Drive to Breathe Explaining Hypocapnia-Resistant Ventilation in Humans
  • Monomeric Alpha-Synuclein Exerts a Physiological Role on Brain ATP Synthase
Show more Articles
  • Home
  • Alerts
  • Follow SFN on BlueSky
  • Visit Society for Neuroscience on Facebook
  • Follow Society for Neuroscience on Twitter
  • Follow Society for Neuroscience on LinkedIn
  • Visit Society for Neuroscience on Youtube
  • Follow our RSS feeds

Content

  • Early Release
  • Current Issue
  • Issue Archive
  • Collections

Information

  • For Authors
  • For Advertisers
  • For the Media
  • For Subscribers

About

  • About the Journal
  • Editorial Board
  • Privacy Notice
  • Contact
  • Accessibility
(JNeurosci logo)
(SfN logo)

Copyright © 2025 by the Society for Neuroscience.
JNeurosci Online ISSN: 1529-2401

The ideas and opinions expressed in JNeurosci do not necessarily reflect those of SfN or the JNeurosci Editorial Board. Publication of an advertisement or other product mention in JNeurosci should not be construed as an endorsement of the manufacturer’s claims. SfN does not assume any responsibility for any injury and/or damage to persons or property arising from or related to any use of any material contained in JNeurosci.